Разное

Как называются зарождающиеся звезды: Формирование звезды — Википедия – «Как появляются звезды?» – Яндекс.Знатоки

Содержание

Формирование звезды — Википедия

Регион образования звёзд N11B, снятый телескопом «Хаббл»

Формирование звезды — процесс, в котором молекулярные облака увеличивают свою плотность, коллапсируют в плазменный шар, превращающийся в звезду.

Эволюция звезды начинается в гигантском молекулярном облаке, также называемом звёздной колыбелью, в котором в результате гравитационной неустойчивости первичная флуктуация плотности начинает разрастаться. Большая часть «пустого» пространства в галактике в действительности содержит от 0,1 до 1 молекулы на см³. Молекулярное облако же имеет плотность около миллиона молекул на см³. Масса такого облака превышает массу Солнца в 100 000—10 000 000 раз благодаря своему размеру: от 50 до 300 световых лет в поперечнике.

По мере того, как молекулярное облако вращается вокруг какой-либо галактики, несколько факторов могут вызвать гравитационный коллапс. К примеру, облака могут столкнуться друг с другом, или одно из них может пройти через плотный рукав спиральной галактики. Другим фактором может стать близлежащий взрыв сверхновой звезды, ударная волна которого столкнётся с молекулярным облаком на огромной скорости. Кроме того, возможно столкновение галактик, способное вызвать всплеск звёздообразования, по мере того, как газовые облака в каждой из галактик сжимаются и возбуждаются в результате столкновения.

При коллапсе молекулярное облако разделяется на части, образуя всё более и более мелкие сгустки. Фрагменты с массой меньше ~100 солнечных масс способны сформировать звезду. В таких формированиях газ нагревается по мере сжатия, вызванного высвобождением гравитационной потенциальной энергии, и облако становится протозвездой, трансформируясь во вращающийся сферический объект.

Звёзды на начальной стадии своего существования, как правило, скрыты от взгляда внутри плотного облака пыли и газа. Часто силуэты таких звёздообразующих коконов можно наблюдать на фоне яркого излучения окружающего газа. Такие образования получили название глобул Бока.

Очень малая доля протозвёзд не достигает достаточной для реакций термоядерного синтеза температуры. Такие звёзды получили название «коричневые карлики», их масса не превышает одной десятой солнечной. Такие звёзды быстро умирают, постепенно остывая за несколько сотен миллионов лет. В некоторых наиболее массивных протозвёздах температура из-за сильного сжатия может достигнуть 10 миллионов К, делая возможным синтез гелия из водорода. Такая звезда начинает светиться. Начало термоядерных реакций устанавливает гидростатическое равновесие, предотвращая ядро от дальнейшего гравитационного коллапса. Далее звезда может существовать в стабильном состоянии.

Согласно гипотезе В. А. Амбарцумяна, звезды рождаются группами из сверхплотной материи — протозвезды — при её фрагментации.

Межзвёздные облака[править | править код]

В спиральных галактиках, таких, как Млечный Путь имеются звёзды, компактные звёзды, а также заполняющая пространство межзвёздная среда (МЗС), состоящая из газов и пыли. Плотность пыли может составлять от 10−4 до 106 частиц на кубический сантиметр и состоит как правило на 70 % (масс.) из водорода, остальную часть может составлять в основном гелий, также среда содержит в себе относительно небольшую долю тяжёлых элементов, в частности металла, оставшихся после смерти звёзд. Места особенно высокого скопления звёздной пыли называется туманностью[1], где как правило и происходит образование новой звезды[2]. В эллиптических галактиках в отличие от спиральных происходит процесс потери холодных компонентов межзвёздной среды в течение примерно миллиарда лет, из-за чего в таких галактиках гораздо реже образуются туманности и лишь посредством столкновения с другой галактикой

[3].

В туманностях, где образуются звёзды, водород находится в форме двух соединённых молекул H2, в таких случаях туманность называется молекулярным облаком. Наблюдения свидетельствуют, что в холодных облаках, как правило появляются звёзды с небольшой массой, которые сначала видны в инфракрасном спектре внутри облака, и когда облако рассеивается, то и в видимом спектре. В огромных и более тёплых молекулярных облаках могут образовываться звёзды любых масс[4]. Средняя плотность частиц в огромных облаках составляет 100 частиц на сантиметр кубический во всём облаке, чей диаметр может составлять 100 световых лет, или 9,5×1014 километров, масса звёздной пыли может достигать 6 миллионов солнечных масс (M⊙{\displaystyle M_{\odot }})[5]. Около половины массы материи галактик приходится на молекулярные облака

[6]. В Млечном Пути находится 6000 туманностей со средней массой 100,000 M[7], ближайшая известная туманность к солнечной системе — Туманность Ориона, находящаяся на расстоянии 1,300 световых лет[8], однако позже на расстоянии 420 световых лет было обнаружена другая тёмная туманность Ро Змееносца[9].

Помимо основных туманностей, существуют так называемые Глобулы, отличающиеся очень высокой плотностью материи[10], хотя сами по себе глобулы не велики, они могут включать в себя до нескольких солнечных масс[11]. Их можно наблюдать в виде тёмных облаков на фоне светлых туманностей или звёзд. Примерно половина глобул образовались в процессе звёздообразования[12].

Первая наблюдаемая новорождённая звезда, чей возраст составлял 10 миллионов лет была найдена на расстоянии в 10.4 миллиарда световых лет, когда возраст Вселенной составлял 3.3 миллиарда лет. Также исследования показывают, что звёзды сначала представляют собой турбулентный сгусток газо-богатых веществ, живущий около 500 миллионов лет, который в течение этого времени может мигрировать в центр галактики

[13].

Гравитационный коллапс[править | править код]

M_\odot

Межзвёздное облако газа остаётся в гидростатическом равновесии до тех пор, пока кинетическая энергия давления газа находится в равновесии с потенциальной энергией внутренних гравитационных сил. Математически это выражается с помощью теоремы вириала, гласящей, что для поддержания равновесия гравитационная потенциальная энергия должна быть равна удвоенной внутренней тепловой энергии[14]. Если облако настолько массивно, что не сможет поддерживаться лишь давлением газа, то подвергается гравитационному коллапсу. Качественно гравитационная неустойчивость вызывается силами тяготения газового облака, которое противодействует давлению газа, что называется неустойчивостью Джинса и также зависит от температуры и плотности облака, которое обычно содержит в себе от тысячи до десятков тысяч солнечных масс. Это совпадает с типичной массой рассеянных звёздных скоплений, которые появились в результате гравитационного коллапса туманных скоплений

[15].

Помимо огромной молекулярной массы облака, есть и ряд других причин, способных спровоцировать его сжатие, а именно столкновение двух или более облаков или взрыв сверхновой звезды, чья сила удара от взрыва может вызывать сильные возмущения в материи близ находящихся скоплений[2]. Кроме того, массовые соединения газовых облаков, приводящих к звездообразованию, могут быть спровоцированными столкновением двух или более галактик

[16]. Помимо этого подобное столкновение может стать причиной формирования глобулярных кластеров[17].

Сверхмассивная чёрная дыра в ядре галактики может замедлять темп звездообразования у центра галактики. Чёрная дыра, будучи аккрецирующей материей, может начать выделять большое количество энергии, испуская сильный ветер через релятивистские струи, что и приводит к ограничению дальнейшего звездообразования, так как массивные чёрные дыры выкидывают радиочастотные излучающие частицы с околосветовой скоростью, мешающие образованию новых звёзд в стареющих галактиках[18], однако, радиоизлучения вокруг струи могут также и вызвать звездообразование. Кроме того, ослабление струи может инициировать звездообразование при столкновении с облаком[19].

При начале коллапса молекулярное облако распадается на меньшие скопления по порядочному поведению, пока осколки не образуют новую звёздную массу. В каждом из этих скоплений разрушается материя газа, что приводит к излучению энергии за счёт освобождения гравитационной потенциальной энергии. Так как плотность продолжает увеличиваться, массы становятся непрозрачными и постепенно излучают всё меньше высвобожденной энергии. Это повышает температуру массы и препятствует её дальнейшему дроблению. Частицы конденсируются во вращающиеся сферы газа, являющиеся звёздными эмбрионами

[20].

Вместе с процессом разрушения облака происходят такие явления, как турбулентности, макроскопические потоки, вращения, возникновение магнитного поля и изменения геометрии облака[21][22]. Как вращение, так и магнитные поля могут препятствовать распаду облака. Турбулентность играет важную роль в возникновении фрагментации облака, а в малых масштабах она способствует развалу

[23].

M_\odot

Молекулярное облако во время гравитационного коллапса продолжает сжиматься до тех пор, пока не исчезнет гравитационная энергия. Избыточная энергия в основном теряется через излучение. Тем не менее, сжимающееся облако со временем становится непрозрачным для собственного излучения, что приводит к сильному повышению температуры — до 60-100 К. Частицы пыли излучают в длинноволновом инфракрасном спектре в области, где облако прозрачно. Таким образом, пыль способствует дальнейшему распаду облака[24].

Во время сжатия плотность облака увеличивается ближе к центру, и оно становится оптически непрозрачным при достижении около 10−13 грамм на кубический сантиметр. Место наибольшего скопления массы называется первым гидростатическим ядром, где начинается процесс повышения температуры, определяемой теоремой о вириале. Газ падает в сторону непрозрачной области сталкивается с ней и создаёт ударные волны, дополнительно нагревающие ядро.

M_\odot Составное изображение молодых звёзд, вокруг молекулярного облака в созвездии Цефей Часть сложной сети, состоящей из газовых облаков и звёздных скоплений в соседней галактике, большом Магеллановом Облаке

Когда температура ядра достигает примерно 2000 К, начинается процесс разделения водорода, соединённого в молекулы[25]. Этот процесс сопровождается ионизацией атомов водорода и гелия. Процессы поглощения энергии сжатия продолжительны[26]. Когда плотность падающей материи составляет порядка 10−8 грамм на см³, достигается достаточная прозрачность, чтобы высвобождать излучаемую протозвездой энергию. Сочетание конвекции внутри протозвезды и излучения её внешней части способствует дальнейшему процессу сжатия звёздной материи. Это продолжается до тех пор, пока газ сохраняет достаточно высокую температуру для поддержания внутреннего давления и таким образом препятствует дальнейшему гравитационному коллапсу. Данное явление называется гидростатическим равновесием. Когда небесное тело находится на завершающем этапе образования, оно уже называется протозвездой

[2].

Рождение протозвезды также сопровождается и образованием околозвёздного диска, который служит своеобразным резервуаром для дальнейшего формирования звезды. В частности, когда масса и температура звезды достигают достаточных отметок, сила гравитации вызывает процесс слияния звезды и диска. Материя диска «дождём» обрушивается на поверхность звезды. В этой стадии формируются биполярные струи, так называемые Объекты Хербига — Аро — небольшие участки туманности, являющиеся результатом скопления избыточной энергии в звезде и последующего выталкивания части массы материи звезды.

Когда процесс роста звезды за счёт окружающих газа и пыли прекращается, она ещё не является собственно звездой, и называется «звёздой до главной последовательности» или просто «звездой-PMS». Основным источником энергии данных объектов является процесс гравитационного сжатия, в отличие от сжигания водорода в «зрелых звёздах». Процесс сжатия продолжается в соответствии с вертикальным эволюционным треком Хаяши в диаграмме Герцшпрунга — Рассела[27] , пока не достигнет своей точки предела, с последующей фазой сжатия в соответствии с механизмом Кельвина — Гельмгольца. Во второй фазе температура звезды больше не меняется. Если масса звезды выше 0,5 M⊙{\displaystyle M_{\odot }}, то она продолжает сжиматься в соответствии с треком Хеньи и нагреваться до тех пор, пока в её недрах не запустится термоядерная реакция превращения водорода в гелий.[28].

С момента, когда в ядре звезды начинает гореть водород, она уже считается полноценной звездой. В научной среде этап протозвезды в звездообразовании составлен исходя из массы, равной M⊙{\displaystyle M_{\odot }}, таким образом процесс образование более массивной звезды может занимать меньший промежуток времени и сопровождаться иными процессами.

В частности, если речь идёт о массивной протозвезде, (с массой выше 8 M⊙{\displaystyle M_{\odot }}), то сильное радиационное излучение препятствует падающей материи[29]. Ранее считалось, что за счёт этого излучение может останавливать процесс дальнейшего сжатия массивных протозвёзд и предотвращать формирование звёзд с массами больше, чем несколько десятков солнечных масс. Однако недавние исследования показали, что радиационная энергия может высвобождаться в виде мощных струй, способствуя очищению поверхности протозвезды и позволяя ей продолжать соединяться с материей околозвёздного диска[30][31].

Дальнейшая эволюция звезды изучается в астрофизике, как звёздная эволюция.

  1. O’Dell, C. R. Nebula (неопр.) (недоступная ссылка). World Book at NASA. World Book, Inc.. Дата обращения 18 мая 2009. Архивировано 29 апреля 2005 года.
  2. 1 2 3 Prialnik, Dina. An Introduction to the Theory of Stellar Structure and Evolution (англ.). — Cambridge University Press, 2000. — P. 195—212. — ISBN 0-521-65065-8.
  3. Dupraz, C. (June 4–9, 1990). «The Fate of the Molecular Gas from Mergers to Ellipticals». Dynamics of Galaxies and Their Molecular Cloud Distributions: Proceedings of the 146th Symposium of the International Astronomical Union, Paris, France: Kluwer Academic Publishers. 
  4. Lequeux, James. Birth, Evolution and Death of Stars (неопр.). — World Scientific, 2013. — ISBN 978-981-4508-77-3.
  5. Williams, J. P. (2000). «The Structure and Evolution of Molecular Clouds: from Clumps to Cores to the IMF». Protostars and Planets IV. 
  6. Alves, J.; Lada, C.; Lada, E. Tracing H2 Via Infrared Dust Extinction (англ.). — Cambridge University Press, 2001. — P. 217. — ISBN 0-521-78224-4.
  7. Sanders, D. B.; Scoville, N. Z.; Solomon, P. M. Giant molecular clouds in the Galaxy. II – Characteristics of discrete features (англ.) // The Astrophysical Journal : journal. — IOP Publishing, 1985. — 1 February (vol. 289). — P. 373—387. — doi:10.1086/162897. — Bibcode: 1985ApJ…289..373S.
  8. Sandstrom, Karin M.; Peek, J. E. G.; Bower, Geoffrey C.; Bolatto, Alberto D.; Plambeck, Richard L. A Parallactic Distance of 389−21+24{\displaystyle 389_{-21}^{+24}} Parsecs to the Orion Nebula Cluster from Very Long Baseline Array Observations (англ.) // The Astrophysical Journal : journal. — IOP Publishing, 2007. — Vol. 667, no. 2. — P. 1161. — doi:10.1086/520922. — Bibcode: 2007ApJ…667.1161S. — arXiv:0706.2361.
  9. Wilking, B. A.; Gagné, M.; Allen, L. E. Star Formation in the ρ Ophiuchi Molecular Cloud // Handbook of Star Forming Regions, Volume II: The Southern Sky ASP Monograph Publications (англ.) / Bo Reipurth.
  10. Khanzadyan, T.; Smith, M. D.; Gredel, R.; Stanke, T.; Davis, C. J. Active star formation in the large Bok globule CB 34 (англ.) // Astronomy and Astrophysics : journal. — 2002. — February (vol. 383, no. 2). — P. 502—518. — doi:10.1051/0004-6361:20011531. — Bibcode: 2002A&A…383..502K.
  11. Hartmann, Lee. Accretion Processes in Star Formation (неопр.). — Cambridge University Press, 2000. — С. 4. — ISBN 0-521-78520-0.
  12. Smith, Michael David. The Origin of Stars (неопр.). — Imperial College Press, 2004. — С. 43—44. — ISBN 1-86094-501-5.
  13. ↑ Young Star-Forming Clump in Deep Space Spotted for First Time (неопр.). Дата обращения 11 мая 2015.
  14. Kwok, Sun. Physics and chemistry of the interstellar medium (англ.). — University Science Books, 2006. — P. 435—437. — ISBN 1-891389-46-7.
  15. Battaner, E. Astrophysical Fluid Dynamics (неопр.). — Cambridge University Press, 1996. — С. 166—167. — ISBN 0-521-43747-4.
  16. Jog, C. J. (August 26–30, 1997). «Starbursts Triggered by Cloud Compression in Interacting Galaxies». Barnes, J. E. Proceedings of IAU Symposium #186, Galaxy Interactions at Low and High Redshift. 
  17. Keto, Eric; Ho, Luis C.; Lo, K.-Y. M82, Starbursts, Star Clusters, and the Formation of Globular Clusters (англ.) // The Astrophysical Journal : journal. — IOP Publishing, 2005. — December (vol. 635, no. 2). — P. 1062—1076. — doi:10.1086/497575. — Bibcode: 2005ApJ…635.1062K. — arXiv:astro-ph/0508519.
  18. Gralla, Meg et al. A measurement of the millimetre emission and the Sunyaev–Zel’dovich effect associated with low-frequency radio sources (англ.) // Monthly Notices of the Royal Astronomical Society : journal. — Oxford University Press, 2014. — 29 September (vol. 445, no. 1). — P. 460—478. — doi:10.1093/mnras/stu1592. — Bibcode: 2014MNRAS.445..460G. — arXiv:1310.8281.
  19. van Breugel, Wil (November 2004). «The Interplay among Black Holes, Stars and ISM in Galactic Nuclei». T. Storchi-Bergmann: 485–488, Cambridge University Press. DOI:10.1017/S1743921304002996. 
  20. Prialnik, Dina. An Introduction to the Theory of Stellar Structure and Evolution (англ.). — Cambridge University Press, 2000. — P. 198—199. — ISBN 0-521-65937-X.
  21. Hartmann, Lee. Accretion Processes in Star Formation (неопр.). — Cambridge University Press, 2000. — С. 22. — ISBN 0-521-78520-0.
  22. ↑ Li, Hua-bai; Dowell, C. Darren; Goodman, Alyssa; Hildebrand, Roger & Novak, Giles (2009-08-11), Anchoring Magnetic Field in Turbulent Molecular Clouds, arΧiv:0908.1549 [astro-ph.GA] 
  23. Ballesteros-Paredes, J.; Klessen, R. S.; Mac Low, M.-M.; Vazquez-Semadeni, E. Molecular Cloud Turbulence and Star Formation // Protostars and Planets V (неопр.) / Reipurth, B.; Jewitt, D.; Keil, K.. — С. 63—80. — ISBN 0-8165-2654-0.
  24. Longair, M. S. Galaxy Formation (неопр.). — 2nd. — Springer, 2008. — С. 478. — ISBN 3-540-73477-5.
  25. Larson, Richard B. Numerical calculations of the dynamics of collapsing proto-star (англ.) // Monthly Notices of the Royal Astronomical Society : journal. — Oxford University Press, 1969. — Vol. 145. — P. 271. — doi:10.1093/mnras/145.3.271. — Bibcode: 1969MNRAS.145..271L.
  26. Salaris, Maurizio. Evolution of stars and stellar populations (англ.) / Cassisi, Santi. — John Wiley and Sons, 2005. — P. 108—109. — ISBN 0-470-09220-3.
  27. C. Hayashi. Stellar evolution in early phases of gravitational contraction (англ.) // Publications of the Astronomical Society of Japan (англ.)русск. : journal. — 1961. — Vol. 13. — P. 450—452. — Bibcode: 1961PASJ…13..450H.
  28. L. G. Henyey; R. Lelevier; R. D. Levée. The Early Phases of Stellar Evolution (англ.) // Publications of the Astronomical Society of the Pacific (англ.)русск. : journal. — 1955. — Vol. 67, no. 396. — P. 154. — doi:10.1086/126791. — Bibcode: 1955PASP…67..154H.
  29. M. G. Wolfire; J. P. Cassinelli. Conditions for the formation of massive stars (англ.) // The Astrophysical Journal : journal. — IOP Publishing, 1987. — Vol. 319, no. 1. — P. 850—867. — doi:10.1086/165503. — Bibcode: 1987ApJ…319..850W.
  30. C. F. McKee; J. C. Tan. Massive star formation in 100,000 years from turbulent and pressurized molecular clouds (англ.) // Nature : journal. — 2002. — Vol. 416, no. 6876. — P. 59—61. — doi:10.1038/416059a. — Bibcode: 2002Natur.416…59M. — arXiv:astro-ph/0203071. — PMID 11882889.
  31. R. Banerjee; R. E. Pudritz. Massive star formation via high accretion rates and early disk-driven outflows (англ.) // The Astrophysical Journal : journal. — IOP Publishing, 2007. — Vol. 660, no. 1. — P. 479—488. — doi:10.1086/512010. — Bibcode: 2007ApJ…660..479B. — arXiv:astro-ph/0612674.

Как рождаются звезды: от водорода до сверхновой

Когда звезды подмигивают нам с ночного неба, вряд ли мы задумываемся о том, что видим их такими, какими они были сотни и тысячи лет назад. Именно столько требуется фотонам, чтобы достичь наших глаз, двигаясь со световой скоростью. 

                        
Многие из далеких солнц, вероятно, уже давным-давно погасли, другие, пока невидимые для нас, уже успели родиться. Об их появлении рано или поздно узнают наши потомки.

 

Строительный материал для звезд

 

Для появления на свет новой звезды требуется огромное количество водорода ? простейшего из всех существующих молекул. Она состоит из двух атомов, а те, в свою очередь, из ядра с одним протоном, вокруг которого расплылся в квантовом облаке один единственный электрон.

 

А еще необходим дейтерий, тяжелый водород, в ядре которого помимо протона содержится еще один нейтрон ? элементарная частица, не имеющая электрического заряда.

 

Водород ? одно из первых веществ, образовавшихся после Большого Взрыва, после того как раскаленная до невероятных температур материя в виде протонов, нейтронов, электронов и других элементарных частиц начала конденсироваться.

 

Снимок ближайшей к Солнцу звезды – Проксимы Центавра

©ESA/Hubble & NASA

 

Сразу после Большого Взрыва

 

Молекулы водорода образовывались в гигантских количествах, когда температура юной Вселенной несколько понизилась, и протоны начали объединяться с электронами.

 

Эта фаза началась по современным представлениям уже через одну секунду после Большого Взрыва и продолжалась в течение трех минут; за это время температура Вселенной резко упала.

 

Молодая Вселенная состояла на 75% из водорода, с 25% гелия, a также следами других элементов ? до бора (не считая антиматерии).

 

Строительный материал для рождения звезд был готов, но одного наличия водорода было мало. Молекулы должны были сконденсироваться настолько, чтобы гравитационная сила притяжения между ними привела к термоядерной реакции.

 

Непосредственно после Большого Взрыва материя была равномерно распределена в пространстве и, вероятно, так бы и осталась водородным облаком, если бы не квантовые флуктуации, которые привели к колебаниям плотности газа и создали определенные структуры.

 

Рассеянное звездное скопление Плеяды в созвездии Тельца

©Roberto Colombari  

 

Звездная колыбель

 

Следы этих структур до сих пор можно обнаружить в виде космического фонового излучения и межзвездных туманностей во Вселенной, состоящих из водорода и гелия. Именно из такого водородного облака и образуются звезды, когда плотность газа достигает определенного, очень высокого уровня.

 

При этом температура газа возрастает, и его молекулы начинают вращение. Чем плотнее становится облако, тем вращение усиливается, молекулы водорода сталкиваются и излучают фотоны в инфракрасном спектре.

 

При вращении молекулярное облако, именуемое также звездной колыбелью, коллапсирует, но одновременно возникают центробежные силы, которые отталкивают сгущающуюся материю наружу. Так возникает протопланетный диск, в котором могут сформироваться планеты ? скорее всего это будут газовые гиганты, вроде Юпитера. 

 

Звездное сверхскопление Westerlund 1

©ESO/VPHAS+ Survey/N. Wright

 

Рождение звезды

 

Примерно через 50 млн лет газовое облако, наконец, становится протозвездой ? вращающимся плазменным шаром. При этом молекулы водорода из-за чудовищных температур разрушаются, образуя отдельные атомы.

 

Какая-то часть протозвезд так и не достигает температуры, необходимой для термоядерного синтеза. Такие протозвезды образуют коричневые карлики, которые постепенно остывают в течение нескольких сотен млн лет. Их масса невелика ? всего 1–10 % солнечной.

Но в крупных протозвездах процесс коллапса продолжается, внутренняя температура возрастает, пока энергия атомов водорода не достигает критического значения, при котором начинается термоядерная реакция. Энергия гравитации превращается в тепло, плазменный шар начинает излучать, гравитационный коллапс приостанавливается ? наша звезда готова. 

 

Взрыв сверхновой в галактике M82 в созвездии Большая Медведица  

©UCL/University of London Observatory/Steve Fossey/Ben Cooke/Guy Pollack/Matthew Wilde/Thomas Wright

 

Жизнь и смерть звезды

 

В результате термоядерной реакции водород превращается в гелий, звезда функционирует подобно нашему Солнцу. Через несколько миллиардов лет весь водород внутри звезды оказывается исчерпанным, водородное ядро превращается в гелиевое, хотя во внешней оболочке реакции все еще продолжаются.

 

Гелиевое ядро становится все крупнее и крупнее, масса его растет, вновь начинается гравитационный коллапс. Во время этой фазы звезда становится красным гигантом.

 

Внутри ядра звезды под влиянием гравитационного сжатия вновь проходят термоядерные реакции: гелий превращается в другие элементы: углерод, затем кислород, кремний ? вплоть до железа.

 

Вот и пришел конец нашей звезде. Если она достаточно массивна ? раз в восемь тяжелее нашего Солнца, то может превратиться в сверхновую, которая при взрыве разлетается в открытом космосе. Вспышки сверхновой могут быть при этом ярче своих галактик.  

 

Образующаяся при этом ударная волна может привести к сжатию других межзвездных облаков и образованию новых звезд. Впрочем, зачастую сияние новых звезд может запустить цепную реакцию, которая дает толчок рождения новых светил. Так образуются целые звездные поколения.

 

При этом из разлетевшейся материи сверхновых могут сформироваться твердые планеты вблизи новообразующихся звезд, а также многочисленные астероиды, несущиеся в межзвездном пространстве. 

 

Нашли опечатку? Выделите фрагмент и нажмите Ctrl + Enter.

Скопировать ссылку

Звёздная эволюция — Википедия

Эволюция звезды в астрономии — последовательность изменений, которым звезда подвергается в течение её жизни, то есть на протяжении миллионов или миллиардов лет, пока она излучает свет и тепло. В течение таких колоссальных промежутков времени изменения оказываются весьма значительными.

Звезда начинает свою жизнь как холодное разреженное облако межзвёздного газа, сжимающееся под действием гравитационной неустойчивости и постепенно принимающее шаровидную форму. При сжатии энергия гравитационного поля переходит в основном в тепло и излучение, и температура объекта возрастает. Когда температура в центре достигает 15—20 миллионов К, начинаются термоядерные реакции и сжатие прекращается. Объект становится полноценной звездой. Первая стадия жизни звезды подобна солнечной — в ней доминируют реакции водородного цикла[1]. В таком состоянии она пребывает бо́льшую часть своей жизни, находясь на главной последовательности диаграммы Герцшпрунга — Расселла, пока не закончатся запасы топлива в её ядре. Когда в центре звезды весь водород превращается в гелий, образуется гелиевое ядро, а термоядерное горение водорода продолжается на периферии ядра.

Эволюция звезды класса G на примере Солнца

В этот период структура звезды начинает меняться. Её светимость растёт, внешние слои расширяются, а температура поверхности снижается — звезда становится одним из красных гигантов, которые образуют ветвь на диаграмме Герцшпрунга-Рассела. На этой ветви звезда проводит значительно меньше времени, чем на главной последовательности. Когда накопленная масса гелиевого ядра становится значительной, оно не выдерживает собственного веса и начинает сжиматься; если звезда достаточно массивна, возрастающая при этом температура может вызвать дальнейшее термоядерное превращение гелия в более тяжёлые элементы (гелий — в углерод, углерод — в кислород, кислород — в кремний, и наконец — кремний в железо).

Изучение звёздной эволюции невозможно наблюдением лишь за одной звездой — многие изменения в звёздах протекают настолько медленно, что не могут быть замеченными даже по прошествии тысячелетий. Поэтому учёные изучают множество звёзд, каждая из которых находится на определённой стадии жизненного цикла. За последние несколько десятилетий широкое распространение в астрофизике получило моделирование структуры звёзд с использованием вычислительной техники.

К 1939 году было установлено, что источником звёздной энергии является происходящий в недрах звёзд термоядерный синтез[2]. Большинство звёзд испускают излучение потому, что в их недрах четыре протона соединяются через ряд промежуточных этапов в одну альфа-частицу. Это превращение может идти двумя основными путями, называемыми протон-протонным (или p-p-циклом) и углеродно-азотным (или CN-циклом). В маломассивных звёздах энерговыделение, в основном, обеспечивается первым циклом, в тяжёлых — вторым. Запас ядерного топлива в звезде ограничен и постоянно тратится на излучение. Процесс термоядерного синтеза, выделяющий энергию и изменяющий состав вещества звезды, в сочетании с гравитацией, стремящейся сжать звезду и тоже высвобождающей энергию, а также с излучением с поверхности, уносящим выделяемую энергию, являются основными движущими силами звёздной эволюции.

Эволюция звезды начинается в гигантском молекулярном облаке, также называемом звёздной колыбелью. Большая часть «пустого» пространства в галактике в действительности содержит от 0,1 до 1 молекулы на см³. Молекулярное облако же имеет плотность около миллиона молекул на см³. Масса такого облака превышает массу Солнца в 100 000—10 000 000 раз благодаря своему размеру: от 50 до 300 световых лет в поперечнике.

Пока облако свободно обращается вокруг центра родной галактики, ничего не происходит. Однако из-за неоднородности гравитационного поля в нём могут возникнуть возмущения, приводящие к локальным концентрациям массы. Такие возмущения вызывают гравитационное сжатие облака. Один из сценариев, приводящих к этому — столкновение двух облаков. Другим событием, вызывающим коллапс, может быть прохождение облака через плотный рукав спиральной галактики. Также критическим фактором может стать взрыв близлежащей сверхновой звезды, ударная волна которого столкнётся с молекулярным облаком на огромной скорости. Кроме того, возможно столкновение галактик, способное вызвать всплеск звёздообразования, по мере того, как газовые облака в каждой из галактик сжимаются в результате столкновения. В общем, любые неоднородности в силах, действующих на массу облака, могут запустить процесс звёздообразования.

Из-за возникших неоднородностей давление молекулярного газа больше не может препятствовать дальнейшему сжатию, и газ начинает под действием гравитационных сил притяжения собираться вокруг центров будущих звезд, в масштабе времени: tff≃1Gρ{\displaystyle t_{ff}\simeq {\frac {1}{\sqrt {G\rho }}}} К примеру, для Солнца tff=5⋅107{\displaystyle t_{ff}=5\cdot 10^{7}} лет.

По теореме вириала половина высвобождающейся гравитационной энергии уходит на нагрев облака, а половина — на световое излучение. В облаках же давление и плотность нарастают к центру, и коллапс центральной части происходит быстрее, нежели периферии. По мере сжатия длина свободного пробега фотонов уменьшается, и облако становится всё менее прозрачным для собственного излучения. Это приводит к более быстрому росту температуры и ещё более быстрому росту давления. В конце концов градиент давления уравновешивает гравитационную силу, образуется гидростатическое ядро массой порядка 1 % от массы облака. Этот момент невидим — глобула непрозрачна в оптическом диапазоне. Дальнейшая эволюция протозвезды — это аккреция продолжающего падать на «поверхность» ядра вещества, которое за счёт этого растет в размерах. В конце концов масса свободно перемещающегося в облаке вещества исчерпывается, и звезда становится видимой в оптическом диапазоне. Этот момент считается концом протозвёздной фазы и началом фазы молодой звезды.

Вышеописанный сценарий правомерен только в случае, если молекулярное облако не вращается, однако все они в той или иной мере обладают вращательным моментом. Согласно закону сохранения импульса, по мере уменьшения размера облака растёт скорость его вращения, и в определённый момент вещество перестает вращаться как одно тело и разделяется на слои, продолжающие коллапсировать независимо друг от друга. Число и массы этих слоёв зависят от начальных массы и скорости вращения молекулярного облака. В зависимости от этих параметров формируются различные системы небесных тел: звёздные скопления, двойные звёзды, звёзды с планетами.

Процесс формирования звёзд можно описать единым образом, но последующие стадии эволюции звезды почти полностью зависят от её массы, и лишь в самом конце эволюции звезды свою роль может сыграть её химический состав.

Молодые звёзды малой массы[править | править код]

Молодые звёзды малой массы (до трёх масс Солнца)[источник не указан 2035 дней], находящиеся на подходе к главной последовательности, полностью конвективны — процесс конвекции охватывает все тело звезды. Это ещё по сути протозвёзды, в центрах которых только-только начинаются ядерные реакции, и всё излучение происходит в основном из-за гравитационного сжатия. До тех пор пока гидростатическое равновесие не установится, светимость звезды убывает при неизменной эффективной температуре. На диаграмме Герцшпрунга-Рассела такие звёзды формируют почти вертикальный трек, называемый треком Хаяши. По мере замедления сжатия молодая звезда приближается к главной последовательности. Объекты такого типа ассоциируются со звёздами типа T Тельца.

В это время у звёзд массой больше 0,8 масс Солнца ядро становится прозрачным для излучения, и лучистый перенос энергии в ядре становится преобладающим, поскольку конвекция все больше затрудняется всё большим уплотнением звездного вещества. Во внешних же слоях тела звезды превалирует конвективный перенос энергии.

О том, какими характеристиками в момент попадания на главную последовательность обладают звёзды меньшей массы, достоверно неизвестно, так как время нахождения этих звёзд в разряде молодых превышает возраст Вселенной[источник не указан 1616 дней]. Все представления об эволюции этих звёзд базируются только на численных расчётах и математическом моделировании.

По мере сжатия звезды начинает расти давление вырожденного электронного газа и при достижении определённого радиуса звезды сжатие останавливается, что приводит к остановке дальнейшего роста температуры в ядре звезды, вызываемого сжатием, а затем и к её снижению. Для звёзд меньше 0,0767[3][4] масс Солнца это не происходит: выделяющейся в ходе ядерных реакций энергии никогда не хватит, чтобы вместе с внутренним давлением газа уравновесить гравитационное сжатие. Такие «недозвёзды» излучают энергии больше, чем она образуется в процессе термоядерных реакций, и относятся к так называемым коричневым карликам. Их судьба — постоянное сжатие, пока давление вырожденного газа не остановит его, и затем постепенное остывание с прекращением всех начавшихся термоядерных реакций.

Молодые звёзды промежуточной массы[править | править код]

Молодые звёзды промежуточной массы (от 2 до 8 масс Солнца)[источник не указан 2035 дней] качественно эволюционируют точно так же, как и их меньшие сестры и братья, за тем исключением, что в них нет конвективных зон вплоть до главной последовательности.

Объекты этого типа ассоциируются с т. н. звёздами Ae\Be Хербига неправильными переменными спектрального класса B—F0. У них также наблюдаются диски и биполярные джеты. Скорость истечения вещества с поверхности, светимость и эффективная температура существенно выше, чем для T Тельца, поэтому они эффективно нагревают и рассеивают остатки протозвёздного облака.

Молодые звёзды с массой больше 8 солнечных масс[править | править код]

Звезды с такими массами уже обладают характеристиками нормальных звезд, поскольку прошли все промежуточные стадии и смогли достичь такой скорости ядерных реакций, которая компенсировала потери энергии на излучение, пока накапливалась масса для достижения гидростатического равновесия ядра. У этих звёзд истечение массы и светимость настолько велики, что не просто останавливают гравитационный коллапс ещё не ставших частью звезды внешних областей молекулярного облака, но, наоборот, разгоняют их прочь. Таким образом, масса образовавшейся звезды заметно меньше массы протозвёздного облака. Скорее всего, этим и объясняется отсутствие в нашей галактике звёзд с массой больше, чем около 300[5][6] масс Солнца.

Среди звёзд встречается широкое многообразие цветов и размеров. По спектральному классу они варьируются от горячих голубых до холодных красных, по массе — от 0,0767[3][4] до около 300[5][6] Солнечных масс по последним оценкам. Светимость и цвет звезды зависят от температуры её поверхности, которая в свою очередь определяется её массой. Все новые звёзды занимают своё место на диаграмме главной последовательности в соответствии со своим химическим составом и массой.

Маленькие и холодные красные карлики медленно сжигают запасы водорода и остаются на главной последовательности десятки миллиардов лет, в то время как массивные сверхгиганты сходят с главной последовательности уже через несколько десятков миллионов (а некоторые спустя всего несколько миллионов) лет после формирования.

Звёзды среднего размера, такие как Солнце, остаются на главной последовательности в среднем 10 миллиардов лет. Считается, что Солнце все ещё на ней, так как оно находится в середине своего жизненного цикла. Как только звезда истощает запас водорода в ядре, она покидает главную последовательность.

{\displaystyle t_{ff}=5\cdot 10^{7}}

По прошествии определённого времени — от миллиона до десятков миллиардов лет (в зависимости от начальной массы) — звезда истощает водородные ресурсы ядра. В больших и горячих звёздах это происходит гораздо быстрее, чем в маленьких и более холодных. Истощение запаса водорода приводит к прекращению термоядерной реакции.

Без давления, возникавшего в ходе этих реакций и уравновешивавшего внутреннюю гравитацию в теле звезды, звезда снова начинает сжиматься, как уже было ранее в процессе её формирования. Температура и давление снова растут, но, в отличие от стадии протозвезды, до гораздо более высокого уровня. Коллапс продолжается до тех пор, пока при температуре приблизительно в 100 миллионов К не начнутся термоядерные реакции с участием гелия.

Возобновившееся на новом уровне термоядерное «горение» вещества становится причиной чудовищного расширения звезды. Звезда «распухает», становясь очень «рыхлой», и её размер увеличивается приблизительно в 100 раз. Так звезда становится красным гигантом, а фаза горения гелия продолжается около нескольких миллионов лет. Практически все красные гиганты являются переменными звёздами.

То, что происходит далее, также зависит от массы звезды.

Старые звёзды с малой массой[править | править код]

В настоящее время достоверно неизвестно, что происходит с лёгкими звёздами после истощения запаса водорода в их недрах. Поскольку возраст Вселенной составляет 13,7 миллиардов лет, что недостаточно для истощения запаса водородного топлива в таких звёздах, современные теории основываются на компьютерном моделировании процессов, происходящих в таких звёздах.

Некоторые звёзды могут синтезировать гелий лишь в некоторых активных зонах, что вызывает их нестабильность и сильные звёздные ветры. В этом случае образования планетарной туманности не происходит, и звезда лишь испаряется, становясь даже меньше, чем коричневый карлик[источник не указан 2035 дней].

Звезда с массой менее 0,5 солнечной не в состоянии преобразовывать гелий даже после того, как в её ядре прекратятся реакции с участием водорода, — масса такой звезды слишком мала для того, чтобы обеспечить новую фазу гравитационного сжатия до степени, достаточной для «поджига» гелия. К таким звёздам относятся красные карлики, такие как Проксима Центавра, срок пребывания которых на главной последовательности составляет от десятков миллиардов до десятков триллионов лет[4]. После прекращения в их ядрах термоядерных реакций, они, постепенно остывая, будут продолжать слабо излучать в инфракрасном и микроволновом диапазонах электромагнитного спектра.

Звёзды среднего размера[править | править код]

{\displaystyle t_{ff}=5\cdot 10^{7}}

При достижении звездой средней величины (от 0,4 до 3,4 солнечных масс)[источник не указан 2035 дней] фазы красного гиганта в её ядре заканчивается водород, и начинаются реакции синтеза углерода из гелия. Этот процесс идет при более высоких температурах и поэтому поток энергии от ядра увеличивается и, как следствие, внешние слои звезды начинают расширяться. Начавшийся синтез углерода знаменует новую стадию в жизни звезды и продолжается некоторое время. Для звезды, по размеру близкой к Солнцу, этот процесс может занять около миллиарда лет.

Изменения в величине излучаемой энергии заставляют звезду пройти через периоды нестабильности, включающие в себя изменения размера, температуры поверхности и выпуск энергии. Выпуск энергии смещается в сторону низкочастотного излучения. Все это сопровождается нарастающей потерей массы вследствие сильных звёздных ветров и интенсивных пульсаций. Звёзды, находящиеся в этой фазе, получили название «звёзд позднего типа» (также «звезды-пенсионеры»), OH-IR звёзд или Мира-подобных звёзд, в зависимости от их точных характеристик. Выбрасываемый газ относительно богат производимыми в недрах звезды тяжёлыми элементами, такими как кислород и углерод. Газ образует расширяющуюся оболочку и охлаждается по мере удаления от звезды, делая возможным образование частиц пыли и молекул. При сильном инфракрасном излучении звезды-источника в таких оболочках формируются идеальные условия для активации космических мазеров.

Реакции термоядерного сжигания гелия очень чувствительны к температуре. Иногда это приводит к большой нестабильности. Возникают сильнейшие пульсации, которые в результате сообщают внешним слоям достаточное ускорение, чтобы быть сброшенными и превратиться в планетарную туманность. В центре такой туманности остаётся оголенное ядро звезды, в котором прекращаются термоядерные реакции, и оно, остывая, превращается в гелиевый белый карлик, как правило, имеющий массу до 0,5—0,6 солнечных масс и диаметр порядка диаметра Земли.

Вскоре после гелиевой вспышки «загораются» углерод и кислород; каждое из этих событий вызывает серьёзную перестройку тела звезды и её быстрое перемещение по диаграмме Герцшпрунга — Рассела. Размер атмосферы звезды увеличивается ещё больше, и она начинает интенсивно терять газ в виде разлетающихся потоков звёздного ветра. Судьба центральной части звезды полностью зависит от её исходной массы, — ядро звезды может закончить свою эволюцию как:

В двух последних ситуациях эволюция звёзды завершается катастрофическим событием — вспышкой сверхновых.

Подавляющее большинство звёзд, и Солнце в том числе, завершают свою эволюцию, сжимаясь до тех пор, пока давление вырожденных электронов не уравновесит гравитацию. В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды, звезду называют белым карликом. Она лишена источников энергии и, постепенно остывая, становится невидимым чёрным карликом.

У звёзд более массивных, чем Солнце, давление вырожденных электронов не может остановить дальнейшее сжатие ядра, и электроны начинают «вдавливаться» в атомные ядра, что превращает протоны в нейтроны, между которыми не существуют силы электростатического отталкивания. Такая нейтронизация вещества приводит к тому, что размер звезды, которая теперь, фактически, представляет собой одно огромное атомное ядро, измеряется несколькими километрами, а плотность в 100 млн раз превышает плотность воды. Такой объект называют нейтронной звездой; его равновесие поддерживается давлением вырожденного нейтронного вещества.

Сверхмассивные звёзды[править | править код]

{\displaystyle t_{ff}=5\cdot 10^{7}}

После того как звезда с массой большей, чем пять Солнечных масс, входит в стадию красного сверхгиганта, её ядро под действием сил гравитации начинает сжиматься. По мере сжатия растут температура и плотность, и начинается новая последовательность термоядерных реакций. В таких реакциях синтезируются всё более тяжёлые элементы: гелий, углерод, кислород, кремний и железо, что временно сдерживает коллапс ядра.

В результате по мере образования всё более тяжёлых элементов Периодической системы, из кремния синтезируется железо-56. На этой стадии дальнейший экзотермический термоядерный синтез становится невозможен, поскольку ядро железа-56 обладает максимальным дефектом массы и образование более тяжёлых ядер с выделением энергии невозможно. Поэтому когда железное ядро звезды достигает определённого размера, то давление в нём уже не в состоянии противостоять весу вышележащих слоёв звезды, и происходит незамедлительный коллапс ядра с нейтронизацией его вещества.

То, что происходит далее, пока до конца не ясно, но, в любом случае, происходящие процессы в считанные секунды приводят к взрыву сверхновой звезды невероятной мощности[7].

Сильные струи нейтрино и вращающееся магнитное поле выталкивают большую часть накопленного звездой материала[источник не указан 2035 дней] — так называемые рассадочные элементы, включая железо и более лёгкие элементы. Разлетающаяся материя бомбардируется вылетающими из звездного ядра нейтронами, захватывая их и тем самым создавая набор элементов тяжелее железа, включая радиоактивные, вплоть до урана (а возможно, даже до калифорния). Таким образом, взрывы сверхновых объясняют наличие в межзвёздном веществе элементов тяжелее железа, но это не есть единственно возможный способ их образования, что, к примеру, демонстрируют технециевые звёзды.

Взрывная волна и струи нейтрино уносят вещество прочь от умирающей звезды[источник не указан 2035 дней] в межзвёздное пространство. В последующем, остывая и перемещаясь по космосу, этот материал сверхновой может столкнуться с другим космическим «утилем» и, возможно, участвовать в образовании новых звёзд, планет или спутников.

Процессы, протекающие при образовании сверхновой, до сих пор изучаются, и пока в этом вопросе нет ясности. Также под вопросом остаётся момент, что же на самом деле остаётся от изначальной звезды. Тем не менее, рассматриваются два варианта: нейтронные звезды и чёрные дыры.

Нейтронные звёзды[править | править код]

Известно, что в некоторых сверхновых сильная гравитация в недрах сверхгиганта заставляет электроны поглотиться атомным ядром, где они, сливаясь с протонами, образуют нейтроны. Этот процесс называется нейтронизацией. Электромагнитные силы, разделяющие близлежащие ядра, исчезают. Ядро звезды теперь представляет собой плотный шар из атомных ядер и отдельных нейтронов.

Такие звёзды, известные как нейтронные звёзды, чрезвычайно малы — не более размера крупного города, и имеют невообразимо высокую плотность. Период их обращения становится чрезвычайно мал по мере уменьшения размера звезды (благодаря сохранению момента импульса). Некоторые нейтронные звёзды совершают 600 оборотов в секунду. У некоторых из них угол между вектором излучения и осью вращения может быть таким, что Земля попадает в конус, образуемый этим излучением; в этом случае можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Такие нейтронные звёзды получили название «пульсары», и стали первыми открытыми нейтронными звёздами.

Чёрные дыры[править | править код]

Далеко не все звёзды, пройдя фазу взрыва сверхновой, становятся нейтронными звёздами. Если звезда обладает достаточно большой массой, то коллапс такой звезды продолжится, и сами нейтроны начнут обрушиваться внутрь, пока её радиус не станет меньше радиуса Шварцшильда. После этого звезда становится чёрной дырой.

Существование чёрных дыр было предсказано общей теорией относительности. Согласно этой теории, материя и информация не может покидать чёрную дыру ни при каких условиях. Тем не менее, квантовые эффекты, вероятно, позволяют этого избежать, например, в виде излучения Хокинга.

Остаются ряд открытых вопросов. В частности, до недавнего времени оставался без ответа главный из них: «А есть ли чёрные дыры вообще?». Ведь чтобы сказать точно, что данный объект — это чёрная дыра, необходимо наблюдать его горизонт событий. Это невозможно сугубо по определению горизонта, но с помощью радиоинтерферометрии со сверхдлинной базой можно определить метрику вблизи объекта по движению газа там, а также зафиксировать быструю, миллисекундную для чёрных дыр звёздных масс, переменность. Эти свойства, наблюдаемые у одного объекта, должны окончательно доказать, что наблюдаемый объект есть чёрная дыра.

В настоящее время чёрные дыры доступны только для косвенных наблюдений. Так, наблюдая светимость ядер активных галактик, можно оценить массу объекта, на который происходит аккреция. Также массу объекта можно оценить по кривой вращения галактики или по частоте обращения близких к объекту звёзд, используя теорему вириала. Ещё один вариант — это наблюдение профиля линий излучения газа из центральной области активных галактик, позволяющее определить скорости его вращения, которые достигают в блазарах десятков тысяч километров в секунду. Для многих галактик масса центра оказывается слишком большой для любого объекта, кроме сверхмассивной чёрной дыры. Есть объекты с явной аккрецией вещества на них, но при этом не наблюдается специфического излучения, вызванного ударной волной. Из этого можно сделать вывод, что аккреция не останавливается твёрдой поверхностью звезды, а просто уходит в области очень большого гравитационно красного смещения, где в согласии с современными представлениями и данным (2009 год) никакой стационарный объект, кроме чёрной дыры, невозможен.

  1. ↑ Институт физики им. Киренского СО РАН | Строение и эволюция вселенной
  2. Шкловский И. С. Звёзды: их рождение, жизнь и смерть. — М.: Наука, Главная редакция физико-математической литературы, 1984. — 384 с.
  3. 1 2 Burrows, A., Hubbard, W. B., Saumon, D., Lunine, J. I. An expanded set of brown dwarf and very low mass star models (англ.) // The Astrophysical Journal : рец. науч. журнал. — 1993. — Vol. 406, no. 1. — P. 158—171. — ISSN 0004-637X. — doi:10.1086/172427. — Bibcode: 1993ApJ…406..158B. — См. С. 160.
  4. 1 2 3 Fred C. Adams & Gregory Laughlin (U. Michigan) (1997), A Dying Universe: The Long Term Fate and Evolution of Astrophysical Objects, arΧiv:astro-ph/9701131 [astro-ph]   (англ.) — См. С. 5. (По поводу срока пребывания на главной последовательности: См. С. 5. — формула (2.1a): τ∗=1010yr[M∗1M⊙]−α{\displaystyle _{\tau _{\ast }=10^{10}yr\left[{M_{\ast } \over 1M_{\odot }}\right]^{-\alpha }}}, где для звёзд малой массы берётся значение α ≈ 3 — 4.)
  5. 1 2 Paul A. Crowther, Olivier Schnurr, Raphael Hirschi et al. The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 M stellar mass limit (англ.) // Monthly Notices of the Royal Astronomical Society : рец. науч. журнал. — 2010. — Vol. 408, no. 2. — P. 731—751. — ISSN 0035-8711. — doi:10.1111/j.1365-2966.2010.17167.x.. — arXiv:1007.3284.
  6. 1 2 Paul Crowther, Olivier Schnurr, Henri Boffin. A 300 Solar Mass Star Uncovered (англ.). ЕЮО (21 July 2010). — Обнаружена звезда массой 300 солнечных (Mon. Not. R. Astron. Soc. (англ.)). Дата обращения 10 января 2012. Архивировано 3 мая 2012 года.
  7. ↑ Взрыв Сверхновой звезды смерти — Популярная механика

Звездообразование — Википедия

Материал из Википедии — свободной энциклопедии

Звездообразование — астрофизический термин, обозначающий крупномасштабный процесс в галактике, при котором массово начинают формироваться звёзды из межзвёздного газа. Спиральные ветви, общая структура галактики, звёздное население, светимость и химический состав межзвёздной среды — всё это результат данного процесса[1].

Для начала процесса образования звёзд из межзвёздных газопылевых туманностей в галактиках требуется наличие в космосе вещества, которое находится в состоянии гравитационной неустойчивости по тем или иным причинам.[2] Например, триггером могут служить близкие от облака взрывы сверхновых типов Ib/c и II, близость к массивным звёздам с интенсивным излучением и наличие внешних магнитных полей, таких, как магнитное поле Млечного Пути. В основном процесс звездообразования происходит в облаках ионизированного водорода или областях H II. В зависимости от типа галактики, интенсивное образование звёзд происходит либо в случайно распределённых областях, либо в областях, упорядоченных в спиральные структуры галактик.[3]Звездообразование носит характер «локальных вспышек». Время «вспышки» непродолжительно, порядка нескольких миллионов лет, масштаб — до сотен парсек[1].

Состав областей межзвёздного газа, из которых произошло формирование звёзд, определяет их химический состав, что позволяет произвести датировку формирования конкретной звезды или отнести её к определённому типу звёздных населений. Более старые звёзды формировались в областях, в которых практически не было тяжёлых элементов и, соответственно, лишены этих элементов в своих атмосферах, что определяется на основании спектральных наблюдений. Кроме спектральных характеристик, первоначальный химический состав звезды оказывает влияние на её дальнейшую эволюцию и, например, на температуру и цвет фотосферы.[источник не указан 199 дней]

По количеству звёзд того или иного населения определяется скорость звездообразования в определённой области на протяжении продолжительного времени. Суммарную массу возникающих звёзд в один год называют темпом звездообразования (англ. SFR, Star Formation Rate)[1].

Процесс звездообразования является одним из основных предметов изучения дисциплины астрофизика. С точки зрения эволюции Вселенной является важным знание истории темпа звездообразования. По современным данным в Млечном Пути сейчас преимущественно образуются звёзды с массами 1—10 M.

Базовые процессы звездообразования включают в себя возникновение гравитационной неустойчивости в облаке, формирование аккреционного диска и начало термоядерных реакций в звезде. Последнее также иногда называется рождением звезды. Начало термоядерных реакций, как правило, останавливает рост массы формирующегося небесного тела и способствует образованию новых звёзд в её окрестности (см., например, Плеяды, Гелиосфера).

В отличие от термина звездообразование, термин формирование звёзд относится к физическому процессу образования звёзд из газопылевых туманностей.

Звезда — Википедия

Недавно взошедшее Солнце, ближайшая к Земле звезда

Звезда́ — массивный газовый шар, излучающий свет и удерживаемый в состоянии равновесия силами собственной гравитации и внутренним давлением, в недрах которого происходят (или происходили ранее) реакции термоядерного синтеза[1]. Ближайшей к Земле звездой является Солнце — типичный представитель спектрального класса G.

Звёзды образуются из газово-пылевой среды (главным образом из водорода и гелия) в результате гравитационного сжатия. Температура вещества в недрах звёзд измеряется миллионами кельвинов, а на их поверхности — тысячами кельвинов. Энергия подавляющего большинства звёзд выделяется в результате термоядерных реакций превращения водорода в гелий, происходящих при высоких температурах во внутренних областях. Звёзды часто называют главными телами Вселенной, поскольку в них заключена основная масса светящегося вещества в природе. Примечательно, что звёзды имеют отрицательную теплоёмкость[2].

Ближайшей к Солнцу звездой является Проксима Центавра. Она расположена в 4,2 светового года (4,2 св. года = 39 Пм = 39 трлн км = 3,9⋅1013 км) от центра Солнечной системы (см. также Список ближайших звёзд).

Невооружённым глазом (при хорошей остроте зрения и отсутствии искусственной засветки) на небе видно около 6000 звёзд, по 3000 в каждом полушарии. За исключением сверхновых, все видимые с Земли звёзды (включая видимые в самые мощные телескопы) находятся[3] в местной группе галактик.

Большинство звёздных характеристик, как правило, выражается в СИ, но также используется и СГС (например, светимость выражается в эргах в секунду). Масса, светимость и радиус обычно даются в соотношении с нашим Солнцем:

Для обозначения расстояния до звёзд приняты такие единицы, как световой год и парсек.

Меньшие расстояния, такие как радиус гигантских звёзд или большая полуось двойных звёзд, часто выражаются с использованием астрономической единицы (а.e.), равной среднему расстоянию между Землёй и Солнцем (около 150 млн км).

Классификации звёзд начали строить сразу после того, как начали получать их спектры. В первом приближении спектр звезды можно описать как спектр чёрного тела, но с наложенными на него линиями поглощения или излучения. По составу и силе этих линий звезде присваивался тот или иной определённый класс. Так поступают и сейчас, однако, нынешнее деление звёзд гораздо более сложное: дополнительно оно включает абсолютную звёздную величину, наличие или отсутствие переменности блеска и размеров, а основные спектральные классы разбиваются на подклассы.

В начале XX века Герцшпрунг и Рассел нанесли на диаграмму «Абсолютная звёздная величина» — «спектральный класс» различные звёзды, и оказалось, что бо́льшая их часть сгруппирована вдоль узкой кривой. Позже эта диаграмма (ныне носящая название диаграмма Герцшпрунга — Рассела) оказалась ключом к пониманию и исследованиям процессов, происходящих внутри звезды.

Теперь, когда есть теория внутреннего строения звёзд и теория их эволюции, стало возможным и объяснение существования классов звёзд. Оказалось, что всё многообразие видов звёзд — это не более чем отражение количественных характеристик звёзд (такие как масса и химический состав) и эволюционного этапа, на котором в данный момент находится звезда.

В каталогах и на письме класс звёзд пишется в одно слово, при этом сначала идёт буквенное обозначение основного спектрального класса (если класс точно не определён, пишется буквенный диапазон, к примеру, O-B), далее арабскими цифрами уточняется спектральный подкласс, потом римскими цифрами идёт класс светимости (номер области на диаграмме Герцшпрунга — Рассела), а затем идёт дополнительная информация. К примеру, Солнце имеет класс G2V.

Звёзды главной последовательности[править | править код]

Наиболее многочисленный класс звёзд составляют звёзды главной последовательности, к такому типу звёзд принадлежит и наше Солнце. С эволюционной точки зрения главная последовательность — это та область диаграммы Герцшпрунга-Рассела, в которой звезда находится большую часть своей жизни. В это время потери энергии на излучения компенсируются за счёт энергии, выделяющейся в ходе ядерных реакций. Время жизни на главной последовательности определяется массой и долей элементов тяжелее гелия (металличностью).

Современная (гарвардская) спектральная классификация звёзд, разработана в Гарвардской обсерватории в 1890—1924 годах.

Основная (гарвардская) спектральная классификация звёзд
Класс Температура,
K
Истинный цвет Видимый цвет[4][5] Основные признаки[6]
O 30 000—60 000 голубой голубой Слабые линии нейтрального водорода, гелия, ионизованного гелия, многократно ионизованных Si, C, N.
B 10 000—30 000 бело-голубой бело-голубой и белый Линии поглощения гелия и водорода. Слабые линии H и К Ca II.
A 7500—10 000 белый белый Сильная бальмеровская серия, линии H и К Ca II усиливаются к классу F. Также ближе к классу F начинают появляться линии металлов
F 6000—7500 жёлто-белый белый Сильны Линии H и К Ca II, линии металлов. Линии водорода начинают ослабевать. Появляется линия Ca I. Появляется и усиливается полоса G, образованная линиями Fe, Ca и Ti.
G 5000—6000 жёлтый жёлтый Линии H и К Ca II интенсивны. Линия Ca I и многочисленные линии металлов. Линии водорода продолжают слабеть, Появляются полосы молекул CH и CN.
K 3500—5000 оранжевый желтовато-оранжевый Линии металлов и полоса G интенсивны. Линии водорода почти не заметны. Появляются полосы поглощения TiO.
M 2000—3500 красный оранжево-красный Интенсивны полосы TiO и других молекул. Полоса G слабеет. Всё ещё заметны линии металлов.

Коричневые карлики[править | править код]

Коричневые карлики — это тип звёзд, в которых ядерные реакции никогда не могли компенсировать потери энергии на излучение. Долгое время коричневые карлики были гипотетическими объектами. Их существование предсказали в середине XX в., основываясь на представлениях о процессах, происходящих во время формирования звёзд. Однако в 1995 году впервые был обнаружен коричневый карлик. На сегодняшний день открыто достаточно много звёзд подобного типа. Их спектральный класс М — T. В теории выделяется ещё один класс — обозначаемый Y (в 2011 году его существование подтвердилось открытием нескольких звёзд с температурой 300—500 К: WISE J014807.25−720258.8, WISE J041022.71+150248.5, WISE J140518.40+553421.5, WISE J154151.65−225025.2, WISE J173835.52+273258.9, WISE J1828+2650 и WISE J205628.90+145953.3).

Белые карлики[править | править код]

Вскоре после гелиевой вспышки «загораются» углерод и кислород; каждое из этих событий вызывает сильную перестройку звезды и её быстрое перемещение по диаграмме Герцшпрунга — Рассела. Размер атмосферы звезды увеличивается ещё больше, и она начинает интенсивно терять газ в виде разлетающихся потоков звёздного ветра. Судьба центральной части звезды полностью зависит от её исходной массы: ядро звезды может закончить свою эволюцию как белый карлик (маломассивные звёзды), в случае, если её масса на поздних стадиях эволюции превышает предел Чандрасекара — как нейтронная звезда (пульсар), если же масса превышает предел Оппенгеймера — Волкова — как чёрная дыра. В двух последних случаях завершение эволюции звёзд сопровождается катастрофическими событиями — вспышками сверхновых.

Подавляющее большинство звёзд, и Солнце в том числе, заканчивают эволюцию, сжимаясь до тех пор, пока давление вырожденных электронов не уравновесит гравитацию. В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды, звезду называют белым карликом. Она лишена источников энергии и, постепенно остывая, становится тёмной и невидимой.

Красные гиганты[править | править код]

Красные гиганты и сверхгиганты — это звёзды с довольно низкой эффективной температурой (3000—5000 К), однако с огромной светимостью. Типичная абсолютная звёздная величина таких объектов −3m—0m(I и III класс светимости). Для их спектра характерно присутствие молекулярных полос поглощения, а максимум излучения приходится на инфракрасный диапазон.

Переменные звёзды[править | править код]

Переменная звезда — это звезда, у которой за всю историю наблюдения хоть один раз менялся блеск. Причин переменности много и связаны они могут быть не только с внутренними процессами: если звезда двойная и луч зрения лежит или находится под небольшим углом к полю зрения, то одна звезда, проходя по диску звезды, будет его затмевать; также блеск может измениться, если свет от звезды пройдёт сквозь сильное гравитационное поле. Однако в большинстве случаев переменность связана с нестабильными внутренними процессами. В последней версии общего каталога переменных звёзд принято следующее деление[7]:

  1. Эруптивные переменные звёзды — это звёзды, изменяющие свой блеск в силу бурных процессов и вспышек в их хромосферах и коронах. Изменение светимости происходит обычно вследствие изменений в оболочке или потери массы в форме звёздного ветра переменной интенсивности и/или взаимодействия с межзвёздной средой.
  2. Пульсирующие переменные звёзды — это звёзды, показывающие периодические расширения и сжатия своих поверхностных слоёв. Пульсации могут быть радиальными и не радиальными. Радиальные пульсации звезды оставляют её форму сферической, в то время как не радиальные пульсации вызывают отклонение формы звезды от сферической, а соседние зоны звезды могут быть в противоположных фазах.
  3. Вращающиеся переменные звёзды — это звёзды, у которых распределение яркости по поверхности неоднородно и/или они имеют неэлипсоидальную форму, вследствие чего при вращении звёзд наблюдатель фиксирует их переменность. Неоднородность яркости поверхности может быть вызвана наличием пятен или температурных или химических неоднородностей, вызванных магнитными полями, чьи оси не совпадают с осью вращения звезды.
  4. Катаклизмические (взрывные и новоподобные) переменные звёзды. Переменности этих звёзд вызваны взрывами, причиной которых являются взрывные процессы в их поверхностных слоях (новые) или глубоко в их недрах (сверхновые).
  5. Затменно-двойные системы
  6. Оптические переменные двойные системы с жёстким рентгеновским излучением
  7. Новые типы переменных — типы переменности, открытые в процессе издания каталога и поэтому не попавшие в уже изданные классы.

Типа Вольфа — Райе[править | править код]

Звёзды Вольфа — Райе — класс звёзд, для которых характерны очень высокая температура и светимость; звёзды Вольфа — Райе отличаются от других горячих звёзд наличием в спектре широких полос излучения водорода, гелия, а также кислорода, углерода, азота в разных степенях ионизации (NIII — NV, CIII — CIV, OIII — OV). Ширина этих полос может достигать 100 Å, а излучение в них может в 10-20 раз превышать излучение в континууме. Звёзды такого типа имеют свой класс — W[8]. Однако подклассы строятся совсем не как у звёзд главной последовательности:

  1. WN — подкласс Вольфа-Райе звёзд в спектрах которых есть линии NIII — V и HeI-II.
  2. WO — в их спектрах сильны линии кислорода. Особенно ярки линии OVI λ3811 — 3834
  3. WC — звёзды, богатые углеродом.

Окончательной ясности происхождения звёзд типа Вольфа — Райе не достигнуто. Однако можно утверждать, что в нашей Галактике это гелиевые остатки массивных звёзд, сбросившие значительную часть массы на каком-то этапе своей эволюции[9].

Типа T Тельца[править | править код]

Звезда типа T Тельца с околозвёздным диском

Звёзды типа T Тельца (T Tauri, T Tauri stars, TTS) — класс переменных звёзд, названный по имени своего прототипа Т Тельца. Обычно их можно обнаружить рядом с молекулярными облаками и идентифицировать по их переменности (весьма нерегулярной) в оптическом диапазоне и хромосферной активности.

Они принадлежат к звёздам спектральных классов F, G, K, M и имеют массу меньше двух солнечных. Период вращения от 1 до 12 дней. Температура их поверхности такая же, как и у звёзд главной последовательности той же массы, но они имеют несколько большую светимость, потому что их радиус больше. Основным источником их энергии является гравитационное сжатие[10].

В спектре звёзд типа T Тельца присутствует литий, который отсутствует в спектрах Солнца и других звёзд главной последовательности, так как он разрушается при температуре выше 2 500 000 K[11].

Новые[править | править код]

Новая звезда — тип катаклизмических переменных. Блеск у них меняется не так резко, как у сверхновых (хотя амплитуда может составлять 9m): за несколько дней до максимума звезда лишь на 2m слабее. Количество таких дней определяет, к какому классу новых относится звезда[12]:

  1. Очень быстрые, если это время (обозначаемое как t2) меньше 10 дней.
  2. Быстрые — 11<t2<25 дней
  3. Очень медленные: 151<t2<250 дней
  4. Предельно медленные, находящиеся вблизи максимума годами.

Существует зависимость максимума блеска новой от t2. Иногда эту зависимость используют для определения расстояния до звезды. Максимум вспышки в разных диапазонах ведёт себя по-разному: когда в видимом диапазоне уже наблюдается спад излучения, в ультрафиолете всё ещё продолжается рост. Если наблюдается вспышка и в инфракрасном диапазоне, то максимум будет достигнут только после того, как блеск в ультрафиолете пойдёт на спад. Таким образом болометрическая светимость во время вспышки довольно долго остаётся неизменной.

В нашей Галактике можно выделить две группы новых: новые диска (в среднем они ярче и быстрее), и новые балджа, которые немного медленнее и, соответственно, немного слабее.

Сверхновые[править | править код]

Сверхно́вые звёзды — звёзды, заканчивающие свою эволюцию в катастрофическом взрывном процессе. Термином «сверхновые» были названы звёзды, которые вспыхивали гораздо (на порядки) сильнее так называемых «новых звёзд». На самом деле, ни те, ни другие физически новыми не являются, всегда вспыхивают уже существующие звёзды. Но в нескольких исторических случаях вспыхивали те звёзды, которые ранее были на небе практически или полностью не видны, что и создавало эффект появления новой звезды. Тип сверхновой определяется по наличию в спектре вспышки линий водорода. Если он есть, значит сверхновая II типа, если нет — то I типа.

Гиперновые[править | править код]

Гиперновая — коллапс исключительно тяжёлой звезды после того, как в ней больше не осталось источников для поддержания термоядерных реакций; другими словами, это очень большая сверхновая.

С начала 1990-х годов были замечены столь мощные взрывы звёзд, что сила взрыва превышала мощность взрыва обычной сверхновой примерно в 100 раз, а энергия взрыва превышала 1046 джоулей. К тому же, многие из этих взрывов сопровождались очень сильными гамма-всплесками. Интенсивное исследование неба нашло несколько аргументов[источник не указан 1784 дня] в пользу существования гиперновых звёзд, но пока что они являются гипотетическими объектами.

Сегодня термин используется для описания взрывов звёзд с массой более 100 масс Солнца. Гиперновые, теоретически, могли бы создать серьёзную угрозу Земле вследствие сильной радиоактивной вспышки, но в настоящее время вблизи Земли нет звёзд, которые могли бы представлять такую опасность. По некоторым данным[источник не указан 1784 дня], 440 миллионов лет назад имел место взрыв гиперновой звезды вблизи Земли. Вероятно, короткоживущий изотоп никеля 56Ni попал на Землю в результате этого взрыва.

LBV[править | править код]

Яркие голубые переменные (ЯГП), также известные как переменные типа S Золотой Рыбы (SDOR), — это очень яркие голубые пульсирующие гипергиганты, названные по звезде S Золотой Рыбы (S Dor) в БМО. Они показывают неправильные (иногда циклические) изменения блеска с амплитудой от 1m до 7m. Обычно, самые яркие голубые звёзды галактик, в которых они наблюдаются. Как правило, связаны с диффузными туманностями и окружены расширяющимися оболочками. Встречаются исключительно редко.

Яркие голубые переменные могут сиять в миллион раз сильнее, чем Солнце и их масса может быть 150 солнечных, подходя к теоретическому пределу на массу звезды, что делает их самыми яркими, горячими и мощными звёздами во Вселенной[источник не указан 1784 дня]. Звёзды этого типа всегда находятся в состоянии неустойчивого гидростатического равновесия, поскольку с их поверхности постоянно истекает мощнейший звёздный ветер, который всё время снижает их массу. По этой причине они всегда окружены туманностями (см. Эта Киля, которая является наиболее близкой и наиболее изученной ЯГП). Из-за их огромной массы время жизни таких звёзд очень мало: всего несколько миллионов лет.

Современные теории считают, что ЯГП — это только стадия эволюции очень массивных звёзд, которая позволяет им сбросить часть массы. Они могут эволюционировать в звезду Вольфа — Райе, перед тем как взорваться как сверхновая, или даже как гиперновая, если они не потеряют достаточно массы.

ULX[править | править код]

Ультраяркие рентгеновские источники (ULXs) — небесное тело с сильным излучением в рентгеновском диапазоне (1039 — 1042 эрг с−1 в диапазоне 0,5 −100 кэВ), квазипериодическим на масштабе порядка 20 с, шкала переменности от нескольких секунд до нескольких лет. Если предположить, что излучение изотропно, то для согласования с эдингтоновской светимостью, необходимо, чтобы масса гравитирующего тела была 10 000 M[13][14]. О природе явления ведутся споры. Большинство моделей полагает, что в качестве источника излучения служит чёрная дыра, а вот о механизме высвечивания энергии единого мнения нет.

Нейтронные звёзды[править | править код]

На поздних стадиях эволюции у звёзд с массой 8—10 M давление вырожденных электронов не может сдержать сжатие ядра, и оно продолжается до тех пор, пока большинство частиц не превратится в нейтроны. Масса таких звёзд начинается от предела Чандрасекара (1,44 M) и до предела Оппенгеймера — Волкова при диаметре порядка 10 км.

Ещё одной особенностью нейтронных звёзд является сильное магнитное поле. Благодаря ему и быстрому вращению, приобретённому звездой из-за несферического коллапса или как результат сохранения вращательного момента при сильном сжатии, на небе наблюдаются радио- и рентгеновские пульсары.

Уникальные звезды[править | править код]

Основная статья: SS 433

SS 433 (известный также как V 1343 Орла и 1908+05), или объект Стефенсона — Сандьюлика — двойная затменная звёздная система 14-й звёздной величины, включающая в себя два компонента. Один из них представляет собой массивную звезду высокой температуры (около 30 тыс. кельвинов) и светимости, а другой — компактную звезду (нейтронную звезду или чёрную дыру). С главной звезды на спутник непрерывно перетекает струя газа, так как гигант не может сохранить свою целостность в поле тяготения своего очень компактного соседа. Вокруг компактной звезды формируется аккреционный диск из перетекающего на неё вещества, который затмевает главную звезду раз в 13 суток. Спутник окружён облаком плазмы, имеющим очень высокую температуру и светимость. Эти процессы порождают мощное рентгеновское излучение.

Других звёздных систем, подобных SS 433, астрономами в нашей Галактике пока не найдено.

Звёздные системы могут быть одиночными и кратными: двойными, тройными и большей кратности. В случае если в систему входит более десяти звёзд, то принято её называть звёздным скоплением. Двойные (кратные) звёзды очень распространены. По некоторым оценкам, более 70 % звёзд в галактике кратные[15]. Так, среди 32 ближайших к Земле звёзд 12 кратных, из которых 10 двойных (в том числе и самая яркая из визуально наблюдаемых звёзд — Сириус). В окрестностях 20 парсек от Солнечной системы из более 3000 звёзд, около половины — двойные звёзды всех типов[16].

Двойные звёзды[править | править код]

Двойная звезда, или двойная система — две гравитационно-связанные звезды, обращающиеся по замкнутым орбитам вокруг общего центра масс. C помощью двойных звёзд существует возможность узнать массы звёзд и построить различные зависимости. А не зная зависимости масса — радиус, масса — светимость и масса — спектральный класс, практически ничего невозможно сказать ни о внутреннем строении звёзд, ни об их эволюции.

Но двойные звёзды не изучались бы столь серьёзно, если бы все их значение сводилось к информации о массе. Несмотря на многократные попытки поиска одиночных чёрных дыр, все кандидаты в чёрные дыры находятся в двойных системах. Звёзды Вольфа — Райе были изучены именно благодаря двойным звёздам.

Тесные двойные звёзды (ТДС)[править | править код]

Среди двойных звёзд выделяют так называемые тесные двойные системы (ТДС): двойные системы, в которых происходит обмен веществом между звёздами. Расстояние между звёздами в тесной двойной системе сравнимо с размерами самих звёзд, поэтому в таких системах возникают более сложные эффекты, чем просто притяжение: приливное искажение формы, прогрев излучением более яркого компаньона и другие эффекты.

Звёздные скопления[править | править код]

Звёздное скопление — группа звёзд, имеющих общее происхождение, положение в пространстве и направление движения. Члены таких групп связаны между собой взаимным тяготением. Большинство из известных скоплений находится в нашей Галактике.

Открытие звёздных скоплений принадлежит английскому астроному Уильяму Гершелю. Всего им было описано около 2 тыс. скоплений. До наблюдений Гершеля считалось, что звёзды однородно распределены по всей Вселенной. Так было и во времена Исаака Ньютона. Но Гершель смог опровергнуть это мнение, доказав, что распределение звёзд в пространстве очень неравномерно. Многие из них собраны в тесные группы; Гершель дал таким группам название «звёздные кучи», а затем они были переименованы в «звёздные скопления». Несколько позже, в XIX веке, скопления были разделены учёными на два класса (а позднее к ним добавился ещё один).

Известны три класса звёздных скоплений: шаровые, рассеянные и ассоциации. Классы различаются между собой по внешнему виду, количеству звёзд и по расстояниям между компонентами скопления. Кроме того, существуют различия по химическому составу, возрасту, типам звёзд, входящих в группу, а также по расположению скоплений в Галактике.

Шаровые[править | править код]

Шаровое скопление — скопление звёзд, имеющее сферическую или слегка сплюснутую форму. Их диаметр колеблется от 20 до 100 парсек. Это одни из старейших объектов во Вселенной. Типичный возраст шаровых скоплений — более 10 млрд лет. Поэтому в их состав входят маломассивные старые звёзды, большинство из которых находится на завершающих стадиях своей эволюции. Как следствие, здесь много нейтронных звёзд, цефеид и белых карликов; предполагается также наличие чёрных дыр. Нередко в скоплениях происходят вспышки новых звёзд.

Шаровые скопления отличаются высокой концентрацией звёзд. К примеру, в кубическом парсеке в центре такого скопления находится от нескольких сот до десятков тысяч звёзд. Для сравнения: в окрестностях Солнца на объём более одного кубического парсека приходится только одна звезда.

Шаровые скопления возникли из гигантского догалактического облака, из которого впоследствии сформировалась Галактика. В Млечном Пути насчитывают более 150 шаровых скоплений, большинство из которых концентрируются к центру галактики.

Рассеянные[править | править код]

Рассеянное скопление — второй класс звёздных скоплений. Это звёздная система, компоненты которой располагаются на достаточно большом расстоянии друг от друга. Этим она отличается от шаровых скоплений, где концентрация звёзд сравнительно велика. По этой причине рассеянные скопления очень трудно обнаруживать и изучать. Если звёзды, находящиеся от наблюдателя на одинаковом расстоянии, движутся в одном и том же направлении, есть основания предполагать, что они входят в рассеянное скопление.

Наиболее известные представители этого класса скоплений — Плеяды и Гиады, находящиеся в созвездии Тельца.

Рассеянные скопления довольно многочисленны. Их известно больше, чем шаровых. Некоторые из них находятся на близком расстоянии от Солнца — например, до скопления Гиады около 40 парсек.

Рассеянные скопления обычно состоят из нескольких сот или тысяч звёзд, хотя встречаются и более многочисленные группы. По большей части сюда входят массивные и яркие звёзды, а также переменные. Рассеянные скопления имеют небольшую массу. Их гравитационное поле не способно удерживать компоненты длительное время и те постепенно отдаляются друг от друга.

Ассоциации[править | править код]

Звёздные ассоциации — разреженное скопление молодых звёзд высокой светимости, отличающееся от других типов скоплений своим размером (около 200—300 световых лет). Ассоциации, как правило, связаны с облаками молекулярного газа, имеющего сравнительно низкую температуру. Этот газ является «строительным материалом» для звёзд. Образовавшиеся массивные звёзды нагревают окружающий их молекулярный газ, который со временем рассеивается в межзвёздной среде. Ассоциации, также как и рассеянные скопления, неустойчивы. Они медленно расширяются и их компоненты отдаляются друг от друга.

Галактики[править | править код]

Галактика — это крупное скопление звёзд (чаще всего 10—50 килопарсек в диаметре), межзвёздного газа и пыли, тёмной материи.

У звезды два параметра, определяющие все внутренние процессы — масса и химический состав. Если их задать для одиночной звезды, то на любой момент времени можно предсказать все остальные физические характеристики звезды, такие как блеск, спектр, размер, внутренняя структура.

Расстояние[править | править код]

Существует множество способов определить расстояние до звезды. Наиболее точным и основным для всех остальных методов является метод измерения параллаксов звёзд. Первым измерил расстояние до звезды Веги российский астроном Василий Яковлевич Струве в 1837 году. Определение параллаксов с поверхности Земли позволяет измерить расстояния до 100 парсек, а со специальных астрометрических спутников, таких как Hipparcos, — до 1000 пк.

Если звезда входит в состав звёздного скопления, то мы не сильно ошибёмся, если примем расстояние до звезды равным расстоянию до скопления. Если звезда принадлежит к классу цефеид, то расстояние можно найти из зависимости период пульсации — абсолютная звёздная величина.

В основном, для определения расстояния до далёких звёзд используется фотометрия[17][18].

Масса[править | править код]

Достоверно определить массу звезды можно, только если она является компонентом двойной звезды. В этом случае массу можно вычислить, используя обобщённый третий закон Кеплера. Но даже при этом оценка погрешности составляет от 20 % до 60 % и в значительной степени зависит от погрешности определения расстояния до звезды. Во всех прочих случаях приходится определять массу косвенно, например, из зависимости масса — светимость[19].

В октябре 2010 года был предложен ещё один способ измерения массы звезды: он базируется на наблюдении за прохождением по диску звезды планеты со спутником. Проанализировав полученные данные и применив законы Кеплера, можно определить массу и плотность звезды и планеты, период вращения планеты и её спутника, их размеры относительно размеров звезды и некоторые другие их характеристики. На настоящий момент (18 октября 2010 г.) метод пока не был использован на практике[20].

Наиболее массивной из известных является R136a1, массой в 265 солнечных[21]

Химический состав[править | править код]

Несмотря на то, что доля элементов тяжелее гелия в химическом составе звёзд исчисляется не более чем несколькими процентами, они играют важную роль в жизни звезды. Благодаря им ядерные реакции могут замедляться или ускоряться, а это отражается как на яркости звезды, так и на цвете и на продолжительности её жизни. Так, чем больше металличность массивной звезды, тем меньше будет остаток при взрыве сверхновой.

Наблюдатель, зная химический состав звезды, может довольно уверенно судить о времени образования звезды.

Химический состав звёзд очень сильно зависит от типа звёздного населения и отчасти от массы — у массивных звёзд в недрах полностью отсутствуют элементы тяжелее гелия (в молодом возрасте этих звёзд), жёлтые и красные карлики сравнительно богаты тяжёлыми элементами — они помогают зажечься звёздам при небольшой массе газопылевого облака.[источник не указан 3810 дней]

Структура[править | править код]

Расположение лучистой зоны и конвекционной в звёздах разной массы

В общем случае у звезды, находящейся на главной последовательности, можно выделить три внутренние зоны: ядро, конвективную зону и зону лучистого переноса.

Ядро — это центральная область звезды, в которой идут ядерные реакции.

Конвективная зона — зона, в которой перенос энергии происходит за счёт конвекции. Для звёзд с массой менее 0,5 M она занимает всё пространство от поверхности ядра до поверхности фотосферы. Для звёзд с массой, сравнимой с солнечной, конвективная часть находится на самом верху, над лучистой зоной. А для массивных звёзд она находится внутри, под лучистой зоной.

Лучистая зона — зона, в которой перенос энергии происходит за счёт излучения фотонов. Для массивных звёзд эта зона расположена между ядром и конвективной зоной, у маломассивных она отсутствует, а у звёзд больше массы Солнца находится у поверхности.

На более поздних стадиях добавляются дополнительные слои, в которых идут ядерные реакции с элементами, отличными от водорода. И чем больше масса, тем больше таких слоёв. У звёзд с массой, на 1—2 порядка превышающей Мʘ, таких слоёв может быть до 6, где в верхнем, первом слое всё ещё горит водород, а в нижнем идут реакции превращения углерода в более тяжёлые элементы, вплоть до железа. В таком случае в недрах звезды расположено инертное, в плане ядерных реакций, железное ядро.

Над поверхностью звезды находится атмосфера, как правило, состоящая из трёх частей: фотосферы, хромосферы и короны.

Фотосфера — самая глубокая часть атмосферы, в её нижних слоях формируется непрерывный спектр.

Ядерные реакции[править | править код]

Для звёзд главной последовательности основным источником энергии являются ядерные реакции с участием водорода: протон-протонный цикл, характерный для звёзд с массой около солнечной, и CNO-цикл, идущий только в массивных звёздах и только при наличии в их составе углерода. На более поздних стадиях жизни звезды могут идти ядерные реакции и с более тяжёлыми элементами вплоть до железа.

Основные цепочки ядерных реакций в звёздах
Протон-протонный цикл CNO-цикл
p+p→2D+e++νe+0,4 MeV{\displaystyle \mathrm {p+p\rightarrow {}^{2}D+{e^{+}}+\nu _{e}+0,4\ MeV} }
2D+p→3He+γ+5,49 MeV{\displaystyle \mathrm {{}^{2}D+p\rightarrow {}^{3}He+\gamma +5,49\ MeV} }
3He+3He→4He+2p+12,85 MeV{\displaystyle \mathrm {{}^{3}He+{}^{3}He\rightarrow {}^{4}He+2p+12,85\ MeV} }
12C+1H→13N+γ+1,95 MeV{\displaystyle \mathrm {^{12}C+{}^{1}H\rightarrow {}^{13}N+\gamma +1,95\ MeV} }
13N→13C+e++νe+1,37 MeV{\displaystyle \mathrm {^{13}N\rightarrow {}^{13}C+{e^{+}}+\nu _{e}+1,37\ MeV} }
13C+1H→14N+γ+7

Рождение звезд

Рождение звезд

Рождение звёзд – процесс таинственный, скрытый от наших глаз, даже вооружённых телескопом.

Лишь в середине XX в. астрономы поняли, что не все звёзды родились одновременно в далёкую эпоху формирования Галактики, что и в наше время появляются молодые звёзды.

В 60–70-е гг. была создана самая первая, ещё очень грубая теория образования звёзд. Позднее новая наблюдательная техника – инфракрасные телескопы и радиотелескопы миллиметрового диапазона – значительно расширила наши знания о зарождении и формировании звёзд.

А начиналось изучение этой проблемы ещё во времена Коперника, Галилея и Ньютона.

 

ОТВЕТ НЬЮТОНА НА ВОПРОС МОЛОДОГО СВЯЩЕННИКА

– НЕ МОЖЕТ ЛИ СИЛА ТЯГОТЕНИЯ ОБЪЯСНИТЬ ПРОИСХОЖДЕНИЕ ЗВЁЗД? –

Из ответного послания Ньютона молодому священнику от 10 декабря 1692 г.:
«…Если бы это вещество было равномерно распределено по бесконечному пространству, оно никогда не могло бы объединиться в одну массу, но часть его сгущалась бы тут, а другая там, образуя бесконечное число огромных масс, разбросанных на огромных расстояниях друг от друга по всему этому бесконечному пространству.
Именно так могли образоваться Солнце и неподвижные звёзды…».

С того времени идея Ньютона почти никем и никогда не оспаривалась. Но понадобилось три столетия, чтобы великая догадка стала надёжной теорией, прочно опирающейся на наблюдения.

ОТКРЫТИЕ МЕЖЗВЁЗДНОГО ВЕЩЕСТВА

Что имел в виду Ньютон, говоря о веществе, распределённом в пространстве?

Действительно, межзвёздное вещество было открыто сразу после изобретения телескопа.
Газовые облака выглядят на небе как туманные пятнышки. Н. Пейреск в 1612 г. впервые упомянул о Большой туманности Ориона. По мере совершенствования телескопов были обнаружены и другие туманные пятна. В каталоге Шарля Мессье (1783 г.) их описано 103, а в списках Уильяма Гершеля (1818 г.) отмечено уже 2500 объектов «не звёздного вида». Наконец, в «Новом общем каталоге туманностей и звёздных скоплений» Джона Дрейера (1888 г.) значится 7840 незвёздных объектов.

В течение трёх столетий туманности, особенно спиральные, считались сравнительно близкими образованиями, связанными с формированием звёзд и планет. Гершель, например, был абсолютно уверен, что он не только нашёл множество облаков дозвёздного вещества, но даже собственными глазами видит, как это вещество под действием тяготения постепенно изменяет свою форму и конденсируется в звёзды.

Как позже выяснилось, некоторые туманности действительно связаны с рождением звёзд. Но в большинстве случаев светлые туманные пятна оказались не газовыми облаками, а очень далёкими звёздными системами. Так что оптимизм астрономов был преждевременным и путь к тайне рождения звёзд предстоял ещё долгий.

В ИГРУ ВСТУПАЮТ ФИЗИКИ

К середине XIX в. физики могли применить к звёздам газовые законы и закон сохранения энергии. С одной стороны, они поняли, что звёзды не могут светить вечно. Источник их энергии ещё не был найден, но, каким бы он ни оказался, всё равно век звезды отмерен и на смену старым должны рождаться новые звёзды.

С другой стороны, те яркие и горячие облака межзвёздного газа, которые смогли обнаружить астрономы в свои телескопы, явно не устраивали физиков как предполагаемое вещество будущих звёзд. Ведь горячий газ стремится расширяться под действием внутреннего давления. И физики не были уверены, что гравитация сможет победить давление газа.

Итак, что же победит – давление или гравитация? В 1902 г. молодой английский физик Джеймс Джине впервые исследовал уравнения движения газа с учётом гравитации и нашёл, что они имеют два решения. Если масса газа мала и его тяготение слабо, а нагрет он достаточно сильно, то в нём распространяются волны сжатия и разрежения – обычные звуковые колебания. Но если облако газа массивное и холодное, то тяготение побеждает газовое давление. Тогда облако начинает сжиматься как целое, превращаясь в плотный газовый шар – звезду. Критические значения массы (Mj) и размера (Ry) облака, при которых оно теряет устойчивость и начинает неудержимо сжиматься – коллапсировать, с тех пор называют джинсовскими.

Однако во времена Джинса и даже гораздо позже астрономы не могли указать тот газ, из которого формируются звёзды. Пока они искали дозвёздное вещество, физики наконец поняли, почему звёзды светят. Исследования атомного ядра и открытие термоядерных реакций позволили объяснить причину длительного свечения звёзд.

НАЙДЕНЫ МОЛОДЫЕ ЗВЁЗДЫ

Оказалось, что чем массивнее звезда, тем ярче она светит и, значит, быстрее сжигает своё термоядерное горючее. Максимальный возраст массивных звёзд спектральных классов О и В составляет 10-30 млн лет. Это очень мало в сравнении с возрастом других объектов Галактики. Следовательно, эти звёзды родились совсем недавно и не могли далеко уйти от места своего рождения. Одно из таких мест – туманность Ориона – знакомо каждому любителю астрономии.

Большая туманность Ориона (М42 по каталогу Мессье) – яркая эмиссионная, т. е. излучающая свет, туманность, видимая невооружённым глазом как бледное пятно в Мече Ориона. Она удалена от Земли на 1500 световых лет и содержит скопление очень молодых звёзд. В центральной, наиболее яркой её части находятся четыре массивные горячие звезды спектрального класса О – известная Трапеция Ориона. Мощное ультрафиолетовое излучение молодых звёзд вызывает свечение разреженного газа туманности. Но сам этот газ слишком горяч, чтобы из него могли формироваться звёзды. Поиски дозвёздного вещества продолжались.

ИЗ ЧЕГО ОБРАЗУЮТСЯ ЗВЁЗДЫ?

Ещё Гершель обнаружил на фоне Млечного Пути тёмные провалы, которые он называл «дырами в небесах». В конце XIX в. на Ликской обсерватории (США) астроном Эдуард Барнард начал систематическое фотографирование неба. К 1913 г. он нашёл около 200 тёмных туманностей. По его мнению, они представляли собой облака поглощающей свет материи, а вовсе не промежутки между звёздами, как считал Гершель.

Это предположение подтвердилось. Когда рядом с облаком межзвёздного газа или внутри него нет горячей звезды, газ остаётся холодным и не светится. Если бы облако содержало только газ, его могли бы и не заметить. Но помимо газа в межзвёздной среде в небольшом количестве (около 1% по массе) есть мелкие твёрдые частицы – пылинки размерами около 1 мкм и меньше, которые поглощают свет далёких звёзд. Потому-то холодное облако и кажется тёмным «провалом в небесах». Детальное изучение Млечного Пути показало, что очень часто такие «провалы» встречаются в областях звездообразования, подобных туманности Ориона.

В 1946 г. американский астроном Барт Бок обнаружил на фоне светлых туманностей NGC 2237 в Единороге и NGC 6611 в Щите маленькие чёрные пятна, которые назвал глобулами. Размер их от 0,01 до 1 пк. Они ослабляют свет лежащих за ними звёзд в десятки и сотни раз. Это значит, что вещество глобул в тысячи раз плотнее окружающего их газа. Их масса оценивается в пределах от 0,01 до 100 масс Солнца.

После открытия глобул появилось убеждение, что сжимающиеся облака дозвёздной материи уже найдены, что они-то и являются непосредственными предшественниками звёзд. Но вскоре стала очевидной поспешность такого заключения.

Дело в том, что оптические телескопы не дают полного представления о межзвёздной среде: с их помощью мы видим лишь горячие облака, нагретые массивными звёздами (как туманность Ориона), или маленькие тёмные глобулы на светлом фоне. И те и другие – довольно редкие образования. Только созданные в 50-е гг. радиотелескопы позволили обнаружить по излучению в линии 21 см атомарный водород, заполняющий почти всё пространство между звёздами.

Это очень разреженный газ: примерно один атом в кубическом сантиметре пространства (по меркам земных лабораторий – высочайший вакуум!) Но поскольку размер Галактики огромен, в ней набирается около 8 млрд солнечных масс межзвёздного газа, или примерно 5% от её полной массы. Межзвёздный газ более чем на 67% (по массе) состоит из водорода, на 28% из гелия, и менее 5% приходится на все остальные элементы, самые обильные среди которых — кислород, углерод и азот.

Межзвёздного газа особенно много вблизи плоскости Галактики. Почти весь он сосредоточен в слое толщиной 600 световых лет и диаметром около 30 кпк, или 100 тыс. световых лет (это диаметр галактического диска). Но и в таком тонком слое газ распределён неравномерно. Он концентрируется в спиральных рукавах Галактики, а там разбит на отдельные крупные облака протяжённостью в парсеки и даже в десятки парсек, а массой в сотни и тысячи масс Солнца. Плотность газа в них порядка 100 атомов на кубический сантиметр, температура около -200°С. Оказалось, что критические масса и радиус Джинса при таких условиях почти совпадают с массой и радиусом самих облаков, а это значит, что они готовы к коллапсу. Но главное открытие было ещё впереди.

Астрономы подозревали, что при относительно высокой плотности и низкой температуре, царящей в межзвёздных облаках, часть вещества должна объединяться в молекулы. В этом случае важнейшая часть межзвёздной среды недоступна наблюдениям в оптическом диапазоне.

Начавшиеся в 1970 г. ультрафиолетовые наблюдения с ракет и спутников позволили открыть главную молекулу межзвёздной среды – молекулу водорода (Н^). А при наблюдении межзвёздного пространства радиотелескопами сантиметрового и миллиметрового диапазонов были обнаружены десятки других молекул, порой довольно сложных, содержащих до 13 атомов. В их числе молекулы воды, аммиака, формальдегида, этилового спирта и даже аминокислоты глицина.

Как выяснилось, около половины межзвёздного газа содержится в молекулярных облаках. Их плотность в сотни раз больше, чем у облаков атомарного водорода, а температура всего на несколько градусов выше абсолютного нуля. Именно при таких условиях возникают неустойчивые к гравитационному сжатию отдельные уплотнения в облаке массой порядка массы Солнца и становится возможным формирование звёзд.

Большинство молекулярных облаков зарегистрировано только по радиоизлучению. Некоторые, впрочем, давно известны астрономам, например тёмная туманность Угольный Мешок, хорошо видимая глазом в южной части Млечного Пути. Диаметр этого облака 12 пк, но оно выглядит большим, поскольку удалено от нас всего на 150 пк. Его масса около 5 тыс. солнечных масс, тогда как у некоторых облаков масса достигает миллиона солнечных, а размер 60 пк. В таких гигантских молекулярных облаках (их в Галактике всего несколько тысяч) и располагаются главные очаги формирования звёзд.

Ближайшие к нам области звездообразования – это тёмные облака в созвездиях Тельца и Змееносца. Подальше расположен огромный комплекс облаков в Орионе.

ЖИЗНЬ ЧЁРНОГО ОБЛАКА

Молекулярные облака устроены значительно сложнее, чем знакомые нам облака водяного пара в земной атмосфере. Снаружи молекулярное облако покрыто толстым слоем атомарного газа, поскольку проникающее туда излучение звёзд разрушает хрупкие молекулы. Но находящаяся в наружном слое пыль поглощает излучение, и глубже, в тёмных недрах облака, газ почти полностью состоит из молекул.

Структура облаков постоянно изменяется под действием взаимных столкновений, нагрева звёздным излучением, давления межзвёздных магнитных полей. В разных частях облака плотность газа различается в тысячу раз (во столько же раз вода плотнее комнатного воздуха). Когда плотность облака (или отдельной его части) становится настолько большой, что гравитация преодолевает газовое давление, облако начинает неудержимо коллапсировать. Размер его уменьшается всё быстрее и быстрее, а плотность растёт. Небольшие неоднородности плотности в процессе коллапса усиливаются, и в итоге облако фрагментирует, т. е. распадается на части, каждая из которых продолжает самостоятельное сжатие.

При коллапсе возрастают температура и давление газа, что препятствует дальнейшему увеличению плотности. Но пока облако прозрачно для излучения, оно легко остывает и сжатие не прекращается.

Большую роль в дальнейшем играет космическая пыль. Хотя по массе она составляет всего 1% межзвёздного вещества, это очень важный его компонент. В тёмных облаках пылинки поглощают энергию газа и перерабатывают её в инфракрасное излучение, которое легко покидает облако, унося излишки тепла.

Наконец из-за увеличения плотности отдельных фрагментов облака газ становится менее прозрачным. Остывание затрудняется, и возрастающее давление останавливает коллапс. В будущем из каждого фрагмента образуется звезда, а все вместе они составят группу молодых звёзд в недрах молекулярного облака.

Коллапс плотной части облака в звезду, а чаще — в группу звёзд продолжается несколько миллионов лет (сравнительно быстро по космическим масштабам). Новорождённые звёзды разогревают окружающий газ, и под действием высокого давления остатки облака разлетаются.

Именно этот этап мы видим в туманности Ориона. Но по соседству с ней продолжается формирование будущих поколений звёзд. Для света эти области совершенно непрозрачны и наблюдаются только с помощью инфракрасных и радиотелескопов.

ОБЛАКО СТАНОВИТСЯ ЗВЕЗДОЙ

Рождение звезды длится миллионы лет и скрыто от нас в недрах тёмных облаков, так что этот процесс практически недоступен прямому наблюдению. Астрофизики пытаются исследовать его теоретически, с помощью компьютерного моделирования.

Превращение фрагмента облака в звезду сопровождается гигантским изменением физических условий: температура вещества возрастает примерно в 106 раз, а плотность – в 1020 раз. Колоссальные изменения всех характеристик формирующейся звезды составляют главную трудность теоретического рассмотрения её эволюции. На стадии подобных изменений исходный объект уже не облако, но ещё и не звезда. Поэтому его называют протозвездой (от греч. «протос» — «первый»).

В общих чертах эволюцию протозвезды можно разделить на три этапа, или фазы.

Первый этап – обособление фрагмента облака и его уплотнение – мы уже рассмотрели.

Вслед за ним наступает этап быстрого сжатия. В его начале радиус протозвезды примерно в миллион раз больше солнечного. Она совершенно непрозрачна для видимого света, но прозрачна для инфракрасного излучения с длиной волны больше 10 мкм. Излучение уносит излишки тепла, выделяющегося при сжатии, так что температура не повышается и давление газа не препятствует коллапсу. Происходит быстрое сжатие, практически свободное падение вещества к центру облака.

Однако по мере сжатия протозвезда делается всё менее прозрачной, что затрудняет выход излучения и приводит к росту температуры газа. В определённый момент протозвезда становится практически непрозрачной для собственного теплового излучения. Температура, а вместе с ней и давление газа быстро возрастают, сжатие замедляется.

Повышение температуры вызывает значительные изменения свойств вещества. При температуре в несколько тысяч градусов молекулы распадаются на отдельные атомы, а при температуре около 10 тыс. градусов атомы ионизуются, т. е. разрушаются их электронные оболочки. Эти энергоёмкие процессы на некоторое время задерживают рост температуры, но затем он возобновляется. Протозвезда быстро достигает состояния, когда сила тяжести практически уравновешена внутренним давлением газа. Но поскольку тепло всё же понемногу уходит наружу, а иных источников энергии, кроме сжатия, у протозвезды нет, она продолжает потихоньку сжиматься и температура в её недрах всё увеличивается.

Наконец температура в центре протозвезды достигает нескольких миллионов градусов и начинаются термоядерные реакции. Выделяющееся при этом тепло полностью компенсирует охлаждение протозвезды с поверхности. Сжатие прекращается. Протозвезда становится звездой.

«ПЕРВЫЙ КРИК» НОВОРОЖДЁННОЙ ЗВЕЗДЫ

Формирующиеся и очень молодые звёзды часто окружены газопылевой оболочкой – остатками вещества, не успевшими ещё упасть на звезду. Оболочка не выпускает изнутри звёздный свет и полностью перерабатывает его в инфракрасное излучение. Поэтому самые молодые звёзды обычно проявляют себя лишь как инфракрасные источники.

На начальном этапе жизни «поведение» звезды очень сильно зависит от её массы. Низкая светимость маломассивных звёзд позволяет им надолго задержаться на стадии медленного сжатия, «питаясь» только гравитационной энергией. За это время оболочка успевает частично осесть на звезду, а также сформировать околозвёздный газопылевой диск. Эволюция же массивной звезды протекает так быстро, что звезда проживает большую часть жизни, окружённая остатками своей протозвёздной оболочки, которую часто называют газопылевым коконом.

КАКИЕ ЗВЁЗДЫ РОЖДАЮТСЯ

Молекулярные облака, эти «фабрики по производству звёзд», изготовляют звёзды всевозможных типов.

Диапазон масс новорождённых звёзд простирается от нескольких сотых долей до 100 масс Солнца, причём маленькие звёзды образуются значительно чаще, чем крупные. В среднем в Галактике ежегодно рождается примерно десяток звёзд с общей массой около пяти масс Солнца.

Примерно половина звёзд рождаются одиночными; остальные образуют двойные, тройные и более сложные системы. Чем больше компонентов, тем реже встречаются такие системы. Известны звёзды, содержащие до семи компонентов, более сложные пока не обнаружены.

Причины появления двойных и кратных звёзд вполне понятны: исходное вращение газового облака не позволяет ему сжаться в одну компактную звезду. Чем больше сжимается облако, тем быстрее оно вращается (известный «эффект фигуристки», который является следствием закона сохранения момента количества движения). Нарастающие при сжатии центробежные силы сначала делают облако плоским, как ватрушка, а затем вытягивают в «дыню» и разрывают пополам. Каждая из половинок, сжимаясь дальше, продолжает двигаться по орбите вокруг общего центра масс. Если дальнейшее сжатие не разрывает её на части, то образуется двойная звезда, а если деление продолжается – рождается более сложная кратная система.

МОЛОДЫЕ ЗВЁЗДНЫЕ КОЛЛЕКТИВЫ

Большой интерес представляют не только индивидуальные и кратные молодые звёзды, но и их коллективы. Молодые звёзды сконцентрированы вблизи экваториальной плоскости Галактики, что совсем не удивительно: именно там находится слой межзвёздного газа. На нашем небосводе молодые звёзды большой светимости и нагретые ими газовые облака пролегли полосой Млечного Пути. Но если тёмной летней ночью внимательно посмотреть на небо, можно заметить, что в Млечном Пути выделяются отдельные «звёздные облака». Насколько они реальны и какую ступень в эволюции вещества отражают? Эти обширные группировки молодых звёзд получили название звёздные комплексы. Их характерные размеры – несколько сот парсек.

Исторически первыми были обнаружены и исследованы более компактные группы молодых звёзд – рассеянные скопления, подобные Плеядам. Эти сравнительно плотные группы из нескольких сот или тысяч звёзд, связанных взаимной гравитацией, успешно противостоят разрушающему влиянию гравитационного поля Галактики. Их происхождение не вызывает споров: предками таких скоплений являются плотные ядра межзвёздных молекулярных облаков. Рассеянные скопления понемногу теряют свои звёзды, но всё же живут довольно долго: в среднем около 500 млн лет, а иногда и несколько миллиардов.

Часто молодые плотные скопления окружены разреженной короной из таких же молодых звёзд. Нередко подобные короны встречаются и сами по себе, без центрального скопления. Их называют звёздными ассоциациями.

Обычно на фоне Млечного Пути выделяются лишь самые массивные и яркие члены ассоциации — звёзды спектральных классов О и В. Поэтому такие группировки именуются ОВ-ассоциациями. У некоторых из них замечены признаки расширения со скоростью 5-10 км/с, которое началось с самого рождения звёзд. Причина расширения, вероятно, в том, что массивные горячие звёзды сразу после своего появления разогревают окружающий газ и изгоняют его из области звездообразования. С уходом газа эти области лишаются 70-95% своей массы и уже не могут удержать быстро движущиеся звёзды, которые вслед за газом покидают место своего рождения.

Ассоциации недолговечны: через 10-20 млн лет они расширяются до размера более 100 пк и их уже невозможно выделить среди звёзд фона. Это создаёт иллюзию, что ассоциации — редкие группировки звёзд. В действительности они рождаются не реже скоплений, просто разрушаются быстрее.

Процесс формирования звёзд очень сложен и во многом ещё до конца не изучен.

Известны галактики, богатые межзвёздным веществом, но почти лишённые молодых звёзд. А в других системах формирование звёзд происходит так интенсивно, что напоминает взрыв. Понять, какие причины стимулируют звездообразование или, напротив, приглушают его, ещё только предстоит.

Приводится в сокращении – источник

ЕЩЁ МАТЕРИАЛЫ ПО ТЕМЕ:

1. Эволюция звезд

2. Звезды

3. Формирование и эволюция Солнечной системы

Сверхновая звезда — Википедия

Сверхновая звезда или вспышка сверхновой — явление, в ходе которого звезда резко увеличивает свою яркость на 4—8 порядков (на 10-20 звёздных величин) с последующим сравнительно медленным затуханием вспышки[1][2]. Является результатом катаклизмического процесса, возникающего в конце эволюции некоторых звёзд и сопровождающегося выделением огромного количества энергии.

Как правило, сверхновые звёзды наблюдаются постфактум, то есть когда событие уже произошло и его излучение достигло Земли. Поэтому природа сверхновых долго была неясна. Но сейчас предлагается довольно много сценариев, приводящих к подобного рода вспышкам, хотя основные положения уже достаточно понятны.Перейти к разделу «#Общая картина»

Взрыв сопровождается выбросом значительной массы вещества из внешней оболочки звезды в межзвёздное пространство, а из оставшейся части вещества ядра взорвавшейся звезды, как правило, образуется компактный объект — нейтронная звезда, если масса звезды до взрыва составляла более 8 солнечных масс (M), либо чёрная дыра при массе звезды свыше 40 M (масса оставшегося после взрыва ядра — свыше 5 M). Вместе они образуют остаток сверхновой.Перейти к разделу «#Модель молодого остатка сверхновой»

Комплексное изучение ранее полученных спектров и кривых блеска в сочетании с исследованием остатков и возможных звёзд-предшественников позволяет строить более подробные модели и изучать уже условия, сложившиеся к моменту вспышки.Перейти к разделу «#Построение детального описания»

Помимо всего прочего, выбрасываемое в ходе вспышки вещество в значительной части содержит продукты термоядерного синтеза, происходившего на протяжении всей жизни звезды. Именно благодаря сверхновым Вселенная в целом и каждая галактика в частности химически эволюционирует.

Название отражает исторический процесс изучения звёзд, блеск которых значительно меняется со временем, так называемых новых звёзд. Перейти к разделу «#История наблюдений»

Имя составляется из метки SN, после которой ставят год открытия, с окончанием из одно- или двухбуквенного обозначения. Первые 26 сверхновых текущего года получают однобуквенные обозначения, в окончании имени, из заглавных букв от A до Z. Остальные сверхновые получают двухбуквенные обозначения из строчных букв: aa, ab, и так далее. Неподтверждённые сверхновые обозначают буквами PSN (англ. possible supernova) с небесными координатами в формате: Jhhmmssss+ddmmsss.

Современная классификация сверхновых[3]
Класс Подкласс Механизм
I
Линии водорода отсутствуют
Сильные линии ионизированного кремния (Si II) на 6150 A Ia

После взрыва ничего не остаётся (даже карлика).

Термоядерный взрыв
Iax[4]
В максимуме блеска имеют меньшую светимость в сравнение с Ia. После взрыва остается белый карлик, который приобретает большую скорость движения.
Линии кремния слабые или отсутствуют Ib
Присутствуют линии гелия (He I).
Гравитационный коллапс
Ic
Линии гелия слабые или отсутствуют
II
Присутствуют линии водорода
II-P/L/N
Спектр постоянен
II-P/L
Нет узких линий
II-P
Кривая блеска имеет плато
II-L
Звёздная величина линейно уменьшается со временем[5]
IIn
Присутствуют узкие линии
IIb
Спектр со временем меняется и становится похожим на спектр Ib.

Кривые блеска[править | править код]

Кривые блеска для I типа в высокой степени сходны: 2—3 суток идёт резкий рост, затем его сменяет значительное падение (на 3 звёздные величины) 25—40 суток с последующим медленным ослаблением, практически линейным в шкале звёздных величин. Абсолютная звёздная величина максимума в среднем для вспышек Ia составляет MB=−19.5m{\textstyle M_{B}=-19.5^{m}}, для Ib\c — MB=−18m{\textstyle M_{B}=-18^{m}}.

А вот кривые блеска типа II достаточно разнообразны. Для некоторых кривые напоминали оные для I типа, только с более медленным и продолжительным падением блеска до начала линейной стадии. Другие, достигнув пика, держались на нём до 100 суток, а затем блеск резко падал и выходил на линейный «хвост». Абсолютная звёздная величина максимума варьируется в широком пределе от −20m{\textstyle -20^{m}} до −13m{\textstyle -13^{m}}. Среднее значение для IIp — MB=−18m{\textstyle M_{B}=-18^{m}}, для II-L MB=−17m{\textstyle M_{B}=-17^{m}}.

Спектры[править | править код]

Вышеприведённая классификация уже содержит некоторые основные черты спектров сверхновых различных типов, остановимся на том, что не вошло. Первая и очень важная особенность, которая долго мешала расшифровке полученных спектров — основные линии очень широкие.

Для спектров сверхновых типа II и Ib\c характерно:

  • Наличие узких абсорбционных деталей вблизи максимума блеска и узкие несмещённые эмиссионные компоненты.
  • Линии [NIII], [NIV], [CIII], [CIV] наблюдаемые в ультрафиолетовом излучении.

Наблюдения вне оптического диапазона[править | править код]

Частота вспышек[править | править код]

Частота вспышек зависит от числа звёзд в галактике или, что то же самое для обычных галактик, светимости. Общепринятой величиной, характеризующей частоту вспышек в разных типах галактик, является SNu[6]:

1SNu=1SN1010L⊙(B)∗100year,{\displaystyle 1SNu={\frac {1SN}{10^{10}L_{\odot }(B)*100year}},}

где L⊙(B){\textstyle L_{\odot }(B)} — светимость Солнца в фильтре B. Для разных типов вспышек её величина составляет[6]:

При этом сверхновые Ib/c и II тяготеют к спиральным рукавам.

Наблюдение остатков сверхновых[править | править код]
{\textstyle L_{\odot }(B)}

Каноническая схема молодого остатка следующая[7]:

  1. Возможный компактный остаток; обычно это пульсар, но возможно и чёрная дыра.
  2. Внешняя ударная волна, распространяющаяся в межзвёздном веществе.
  3. Возвратная волна, распространяющаяся в веществе выброса сверхновой.
  4. Вторичная, распространяющаяся в сгустках межзвёздной среды и в плотных выбросах сверхновой.

Вместе они образуют следующую картину: за фронтом внешней ударной волны газ нагрет до температур TS ≥ 107 К и излучает в рентгеновском диапазоне с энергией фотонов в 0,1—20 кэВ, аналогично газ за фронтом возвратной волны образует вторую область рентгеновского излучения. Линии высокоионизированных Fe, Si, S и тому подобных указывают на тепловую природу излучения из обоих слоёв.

Оптическое излучение молодого остатка создаёт газ в сгустках за фронтом вторичной волны. Так как в них скорость распространении выше, а значит газ остывает быстрее и излучение переходит из рентгеновского диапазона в оптический. Ударное происхождение оптического излучения подтверждает относительная интенсивность линий.

Волокна в Кассиопее A дают понять, что происхождение сгустков вещества может быть двояким. Так называемые быстрые волокна разлетаются со скоростью 5000—9000 км/с и излучают только в линиях O, S, Si — то есть это сгустки, сформированные в момент взрыва сверхновой. Стационарные конденсации же имеют скорость 100—400 км/с, и в них наблюдается нормальная концентрация H, N, O. Вместе это свидетельствуют, что это вещество было выброшено задолго до вспышки сверхновой и позже было нагрето внешней ударной волной.

Синхротронное радиоизлучение релятивистских частиц в сильном магнитном поле является основным наблюдательным признаком для всего остатка. Область его локализации — прифронтовые области внешней и возвратной волн. Наблюдается синхротронное излучение и в рентгеновском диапазоне[7].

Теоретическое описание[править | править код]

Декомпозиция наблюдений[править | править код]

Природа сверхновых Ia отлична от природы остальных вспышек. Об этом ясно свидетельствует отсутствие вспышек Ib\c и II типов в эллиптических галактиках. Из общих сведений о последних известно, что там мало газа и голубых звёзд, а звездообразование закончилось 1010 лет назад. Это значит, что все массивные звёзды уже завершили свою эволюцию, и из непроэволюционировавших остались только звёзды с массой меньше солнечной. Из теории эволюции звёзд известно, что звёзды подобного типа взорвать невозможно, а следовательно нужен механизм продления жизни для звёзд масс 1-2M[6].

Отсутствие линий водорода в спектрах Ia\Iax говорит о том, что в атмосфере исходной звезды его крайне мало. Масса выброшенного вещества достаточно велика — 1M, преимущественно содержит углерод, кислород и прочие тяжёлые элементы. А смещённые линии Si II указывают на то, что во время выброса активно идут ядерные реакции. Всё это убеждает, что в качестве звезды-предшественника выступает белый карлик, скорее всего углеродно-кислородный[8].

Тяготение к спиральным рукавам сверхновых Ib\c и II типов свидетельствует, что звездой-прародителем являются короткоживущие O-звёзды с массой 8-10M.

Термоядерный взрыв[править | править код]
{\textstyle L_{\odot }(B)} Доминирующий сценарий

Один из способов высвободить требуемое количество энергии — резкое увеличение массы вещества, участвующего в термоядерном горении, то есть термоядерный взрыв. Однако физика одиночных звёзд такого не допускает. Процессы в звёздах, находящихся на главной последовательности, равновесны. Поэтому во всех моделях рассматриваются конечный этап звёздной эволюции — белые карлики. Однако сам по себе последний — устойчивая звезда, и всё может измениться только при приближении к пределу Чандрасекара. Это приводит к однозначному выводу, что термоядерный взрыв возможен только в кратных звёздных системах, скорее всего, в так называемых двойных звёздах.

В данной схеме есть две переменные, влияющие на состояние, химический состав и итоговую массу вовлечённого во взрыв вещества.

Первая[8]:

  • Второй компаньон — обычная звезда, с которого вещество перетекает на первый.
  • Второй компаньон — такой же белый карлик. Такой сценарий называет двойным вырождением.

Вторая:

  • Взрыв происходит при превышении предела Чандрасекара.
  • Взрыв происходит до него.

Общим во всех сценариях образования сверхновых Ia является то, что взрывающийся карлик скорее всего является углеродно-кислородным. Во взрывной волне горения, идущей от центра к поверхности, текут реакции[9]:

12C + 16O → 28Si + γ (Q=16,76 MeV),{\displaystyle ^{12}C~+~^{16}O~\rightarrow ~^{28}Si~+~\gamma ~(Q=16,76~MeV),}
28Si + 28Si → 56Ni + γ (Q=10,92 MeV).{\displaystyle ^{28}Si~+~^{28}Si~\rightarrow ~^{56}Ni~+~\gamma ~(Q=10,92~MeV).}

Масса вступающего в реакцию вещества определяет энергетику взрыва и, соответственно, блеск в максимуме. Если предположить, что в реакцию вступает вся масса белого карлика, то энергетика взрыва составит 2,2 1051 эрг[10].

Дальнейшее поведение кривой блеска в основном определяется цепочкой распада[9]:

56Ni → 56Co → 56Fe.{\displaystyle ^{56}Ni~\rightarrow ~^{56}Co~\rightarrow ~^{56}Fe.}

Изотоп 56Ni нестабилен и имеет период полураспада 6,1 дня. Далее e-захват приводит к образованию ядра 56Co преимущественно в возбуждённом состоянии с энергией 1,72 МэВ. Этот уровень нестабилен, и переход ядра в основное состояние сопровождается испусканием каскада γ-квантов с энергиями от 0,163 МэВ до 1,56 МэВ. Эти кванты испытывают комптоновское рассеяние и их энергия быстро уменьшается до ~100 кэВ. Такие кванты уже эффективно поглощаются фотоэффектом, и, как следствие, нагревают вещество. По мере расширения звезды плотность вещества в звезде падает, число столкновений фотонов уменьшается, и вещество поверхности звезды становится прозрачным для излучения. Как показывают теоретические расчёты, такая ситуация наступает примерно через 20-30 суток после достижения звездой максимума светимости.

Через 60 суток после начала вещество становится прозрачным для γ-излучения. На кривой блеска начинается экспоненциальный спад. К этому времени изотоп 56Ni уже распался, и энерговыделение идёт за счёт β-распада 56Co до 56Fe(T1/2 = 77 дней) с энергиями возбуждения вплоть до 4,2 МэВ.

Гравитационный коллапс ядра[править | править код]
{\displaystyle ^{56}Ni~\rightarrow ~^{56}Co~\rightarrow ~^{56}Fe.}

Второй сценарий выделения необходимой энергии — это коллапс ядра звезды. Масса его должна быть в точности равна массе его остатка — нейтронной звезды, подставив типичные значения получаем[11]:

Etot∼GM2R∼1053{\displaystyle E_{tot}\sim {\frac {GM^{2}}{R}}\sim 10^{53}} эрг,

где M = 0, а R = 10 км, G — гравитационная постоянная. Характерное время при этом:

τff∼1Gρ 4⋅10−3⋅ρ12−0,5{\displaystyle \tau _{ff}\sim {\frac {1}{\sqrt {G\rho }}}~4\cdot 10^{-3}\cdot \rho _{12}^{-0,5}}c,

где ρ12 — плотность звезды, нормированная на 1012г/см3.

Полученное значение на два порядка превосходит кинетическую энергию оболочки. Необходим переносчик, который должен с одной стороны унести высвободившуюся энергию, а с другой — не провзаимодействовать с веществом. На роль такого переносчика подходит нейтрино.

За их образование отвечают несколько процессов. Первый и самый важный для дестабилизации звезды и начала сжатия — процесс нейтронизации[11]:

3He+e−→3H+νe,{\displaystyle {}^{3}He+e^{-}\to {}^{3}H+\nu _{e},}
4He+e−→3H+n+νe,{\displaystyle {}^{4}He+e^{-}\to {}^{3}H+n+\nu _{e},}
56Fe+e−→56Mn+νe.{\displaystyle {}^{56}Fe+e^{-}\to {}^{56}Mn+\nu _{e}.}

Нейтрино от этих реакций уносят 10 %. Главную же роль в охлаждении играет УРКА-процессы (нейтринное охлаждение):

e++n→ν~e+p,{\displaystyle e^{+}+n\to {\tilde {\nu }}_{e}+p,}
e−+p→νe+n.{\displaystyle e^{-}+p\to \nu _{e}+n.}

Вместо протонов и нейтронов могут выступать и атомные ядра, с образованием нестабильного изотопа, который испытывает бета-распад:

e−+(A,Z)→(A,Z−1)+νe,{\displaystyle e^{-}+(A,Z)\to (A,Z-1)+\nu _{e},}
(A,Z−1)→(A,Z)+e−+ν~e.{\displaystyle (A,Z-1)\to (A,Z)+e^{-}+{\tilde {\nu }}_{e}.}

Интенсивность этих процессов нарастает по мере сжатия, тем самым его ускоряя. Останавливает же это процесс рассеяние нейтрино на вырожденных электронах, в ходе которого термолизуются и запираются внутри вещества. Достаточная концентрация вырожденных электронов достигается при плотностях ρnuc=2,8⋅1014{\textstyle \rho _{nuc}=2,8\cdot 10^{14}}г/см3.

Заметим, что процессы нейтронизации идут только при плотностях 1011г/см3, достижимых только в ядре звезды. Это значит, что гидродинамическое равновесие нарушается только в нём. Внешние же слои находятся в локальном гидродинамическом равновесии, и коллапс начинается только после того, как центральное ядро сожмётся и образует твёрдую поверхность. Отскок от этой поверхности обеспечивает сброс оболочки.

Модель молодого остатка сверхновой[править | править код]
Теория эволюции остатка сверхновой[править | править код]

Выделяется три этапа эволюции остатка сверхновой:

  1. Свободный разлёт. Заканчивается в тот момент, когда масса сгребённого вещества сравняется с массой выброса:
    Rs=(3M04πνmHn0)≃2{\displaystyle R_{s}=\left({\frac {3M_{0}}{4\pi \nu m_{H}n_{0}}}\right)\simeq 2} пк, t=RsVs≃200{\displaystyle t={\frac {R_{s}}{V_{s}}}\simeq 200} лет.
  2. Адиабатическое расширение (стадия Седова). Вспышка сверхновой на этой стадии представляется как сильный точечный взрыв в среде с постоянной теплоёмкостью. К этой задаче применимо автомодальное решение Седова, проверенное на ядерных взрывах в земной атмосфере:
    RS=13,5(E51n0)0,2(t104year)0,4{\displaystyle R_{S}=13,5\left({\frac {E_{51}}{n_{0}}}\right)^{0,2}\left({\frac {t}{10^{4}year}}\right)^{0,4}} пк
    TS=1,5(E51n0)RS,(pc)−31010{\displaystyle T_{S}=1,5\left({\frac {E_{51}}{n_{0}}}\right)R_{S,(pc)}^{-3}10^{10}} К
  3. Стадия интенсивного высвечивания. Начинается когда температура за фронтом достигает максимума на кривой радиационных потерь. Согласно численным расчётам это происходит в момент:
    tcool=2,7E510,24n0−0,52∗104{\displaystyle t_{cool}=2,7E_{51}^{0,24}n_{0}^{-0,52}*10^{4}} лет
    Соответствующие радиус внешней ударной волны и её скорость:
    Rcool=20E510,29n0−0,41{\displaystyle R_{cool}=20E_{51}^{0},29n_{0}^{-0,41}} пк, Vcool=280E510,055n00,11{\displaystyle V_{cool}=280E_{51}^{0,055}n_{0}^{0,11}} км/с

Расширение оболочки останавливается в тот момент, когда давление газа остатка уравняется с давлением газа в межзвёздной среде. После этого остаток начинает диссипировать, сталкиваясь с хаотично движущимися облаками. Время рассасывания достигает:

tmax=7E510,32n00,34P~0,4−0,7{\displaystyle t_{max}=7E_{51}^{0,32}n_{0}^{0,34}{\tilde {P}}_{0,4}^{-0,7}} лет
Теория возникновения синхротронного излучения[править | править код]

Поиск остатков сверхновых[править | править код]

Поиск звёзд-предшественников[править | править код]

Теория сверхновых Ia[править | править код]

Помимо неопределённостей в теориях сверхновых Ia, описанных выше, много споров вызывает сам механизм взрыва. Чаще всего модели можно разделить по следующим группам[12]:

  • Мгновенная детонация.
  • Отложенная детонация.
  • Пульсирующая отложенная детонация.
  • Турбулентное быстрое горение.

По крайней мере для каждой комбинации начальных условий перечисленные механизмы можно встретить в той или иной вариации. Но этим круг предложенных моделей не ограничивается. В качестве примера можно привести модели, когда детонируют сразу два белых карлика. Естественно, это возможно только в тех сценариях, когда оба компонента проэволюционировали.

Химическая эволюция и воздействие на межзвёздную среду[править | править код]

Химическая эволюция Вселенной. Происхождение элементов с атомным номером выше железа[править | править код]

Взрывы сверхновых — основной источник пополнения межзвёздной среды элементами с атомными номерами больше (или, как говорят, тяжелее) He. Однако процессы, их породившие, для различных групп элементов и даже изотопов свои.

  1. Практически все элементы тяжелее He и до Fe — результат классического термоядерного синтеза, протекающего, например, в недрах звёзд или при взрыве сверхновых в ходе p-процесса. Тут стоит оговориться, что крайне малая часть всё же была получена в ходе первичного нуклеосинтеза.
  2. Все элементы тяжелее 209Bi — это результат r-процесса.
  3. Происхождение же прочих является предметом дискуссии, в качестве возможных механизмов предлагаются s-, r-, ν-, и rp-процессы[13].
{\displaystyle t_{max}=7E_{51}^{0,32}n_{0}^{0,34}{\tilde {P}}_{0,4}^{-0,7}} Структура и процессы нуклеосинтеза в предсверхновой и в следующее мгновение после вспышки для звезды 25M, масштаб не соблюдён[13].
R-процесс[править | править код]

r-проце́сс — это процесс образования более тяжёлых ядер из более лёгких путём последовательного захвата нейтронов в ходе (n,γ) реакций; продолжается до тех пор, пока темп захвата нейтронов выше, чем темп β-распада изотопа. Иными словами среднее время захвата n нейтронов τ(n,γ) должно быть:

τ(n,γ)≈1nτβ,{\displaystyle \tau (n,\gamma )\approx {\frac {1}{n}}\tau _{\beta },}

где τβ — среднее время β-распада ядер, образующих цепочку r-процесса. Это условие накладывает ограничение на плотность нейтронов, так как:

τ(n,γ)≈(ρ(σnγ,vn)¯)−1{\displaystyle \tau (n,\gamma )\approx \left(\rho {\overline {(\sigma _{n\gamma },v_{n})}}\right)^{-1}}

где (σnγ,vn)¯{\displaystyle {\overline {(\sigma _{n\gamma },v_{n})}}} — произведение сечения реакции (n,γ) на скорость нейтрона относительно ядра мишени, усреднённое по максвелловскому спектру распределения скоростей. Учитывая что, r-процесс происходит в тяжёлых и средних ядрах, 0,1 с < τβ < 100 с, то для n ~ 10 и температуры среды T = 109K, получим характерную плотность:

ρ≈2⋅1017{\displaystyle \rho \approx 2\cdot 10^{17}} нейтронов/см3.

Такие условия достигаются в:

  • ударной волне, которая, проходя по гелиевому и неоновому слоям, вызывает реакцию 22Ne+4He→25Mg+1n{\displaystyle \mathrm {^{22}Ne} +\mathrm {^{4}He} \rightarrow \mathrm {^{25}Mg} +\mathrm {^{1}n} } с требуемой концентрацией нейтронов.
  • центральной части массивной звезды, находящейся в стадии предсверхновой. Там образуется большое количество нейтронов и α{\displaystyle \displaystyle \mathrm {\alpha } }-частиц при фоторасщеплении железа 56Fe+γ→134He+41n{\displaystyle \mathrm {^{56}Fe} +\mathrm {\gamma } \rightarrow 13\,\mathrm {^{4}He} +4\,\mathrm {^{1}n} } на заключительной стадии эволюции.
ν-процесс[править | править код]

ν-процесс — это процесс нуклеосинтеза, через взаимодействие нейтрино с атомными ядрами. Возможно, он ответственен за появление изотопов 7Li, 11B, 19F,

Отправить ответ

avatar
  Подписаться  
Уведомление о