Числовые задачи: Математические задачи с ответами — BrainApps.ru – Числовые головоломки | Задачи и головоломки
Логические и математические задачи с собеседований
Разомнем мозг! В этой статье собраны логические и математические задачи, которые нередко встречаются на собеседованиях и могут попасться вам.
Основные проблемы, которые часто возникают в процессе интервью, не в отсутствии опыта или подготовки. Даже по-настоящему опытный разработчик может легко «споткнуться» о решение какой-нибудь хитро скроенной задачки. Поэтому мы поговорим не о том, как составлять резюме и выгодно презентовать себя. Фокусируемся на решении нетривиальных задач, которые включают в себя решение логического и/или математического характера.
Помните загадку из третьего фильма? Если нет, то вспоминайте, так как этим вопросом любят потчевать в Microsoft.
Задача:
Есть 2 пустых ведра: первое объемом 5 л, второе — 3 л. Как с их помощью отмерить 4 литра воды?
[spoiler title=’Ответ:’ collapse_link=’true’]Сперва наполните пятилитровое ведро. Далее перелейте из него воду в трехлитровое так, чтобы в пятилитровом осталось 2 л воды (полностью заполнив трехлитровое). Вылейте из меньшего ведра всю воду и перелейте в него оставшиеся в большем 2 л. Снова наполните пятилитровое и перелейте один литр в трехлитровое (оно как раз заполнится): так в большем ведре останется 4 л воды.[/spoiler]
Задача:
Есть двадцать баночек с таблетками. Почти во всех таблетки весят по 1 г, и только в одной — по 1,1 г. У нас есть точные весы, с помощью которых нужно определить баночку, каждая таблетка которой весит 1,1 г. Как это сделать, если можно взвесить только 1 раз?
[spoiler title=’Ответ:’ collapse_link=’true’]Давайте абстрагируемся и представим, что у нас 2 баночки, в одной из которых таблетки более тяжелые. Даже если мы поставим их обе на весы, мы ничего не узнаем. Но если мы достанем из одной баночки 1 таблетку, из другой — 2 и положим их на весы — вот тогда-то и откроется истина 🙂 В данном случае вес будет 2,1 или 2,2 (в зависимости от того, сколько каких таблеток мы взяли). Так и определяем нашу баночку.
Вернемся к задаче. Из каждой баночки нужно доставать разное количество таблеток. То есть из первой баночки 1 таблетку, из второй — 2, из третьей — 3 и так далее. Если бы каждая таблетка весила по 1 г, общий вес составил бы 210 г. Но поскольку в одной из баночек таблетки тяжелее, вес будет больше. Для определения нужной баночки просто воспользуемся формулой:
№ тяжелой баночки = (вес - 210) * 10
[/spoiler]
Но на этом интересные логические и математические задачи не заканчиваются. Идем дальше!
Задача:
Парень и девушка договорились встретиться ровно в 21:00. Проблема в том, что у обоих часы идут неправильно. У девушки часы спешат на 2 мин., но она думает, что они на 3 мин. отстают. У парня же часы отстают на 3 мин., но он считает, что они на 2 мин. спешат. Кто из пары опоздает на свидание?
[spoiler title=’Ответ:’ collapse_link=’true’]Ничего сложного: чистая математика. Если у девушки часы спешат, а она думает, что они отстают, то поторопится и придет на 5 мин. раньше. Парень, наоборот, посчитает, что у него еще 5 минут времени в запасе, отчего на эти самые 5 мин. опоздает.[/spoiler]
Задача:
Длина курицы при измерении от головы до хвоста составит 45 см, а вот от хвоста до головы (если измерять вдоль брюха) — 53 см. По статистике плотность курицы на единицу боковой проекции составляет 8 г/см2. Усредненная высота курицы, если мерить ее вдоль боковой поверхности, — 21 см. Сколько весит килограмм курицы?
[spoiler title=’Ответ:’ collapse_link=’true’]Килограмм курицы весит 1 килограмм.[/spoiler]
Да, математические задачи с подвохом тоже встречаются 🙂
Задача:
Книга содержит N страниц, которые пронумерованы стандартно: от 1 до N. Если сложить количество цифр (не сами числа), что содержатся в каждом номере страницы, выйдет 1095. Так сколько в книге страниц?
[spoiler title=’Ответ:’ collapse_link=’true’]Каждый номер страницы имеет цифру на месте единицы, так что есть N цифр, расположенных на месте единицы. А вот после 9 начинаются двухзначные числа, и нам нужно добавить N-9 цифр. То же самое с трехзначными, которые начинаются после 99: добавляем N-99 цифр. Продолжать нет смысла, так как сумма не предполагает более 999 страниц. Получаем следующую формулу:
N + (N-9) + (N-99) = 1095
Далее просто решаем:
3N - 108 = 1095
3N = 1203
N = 401
Итого 401 страница.[/spoiler]
Задача:
Математические задачи на собеседованиях бывают и довольно простыми, но зачастую только на первый взгляд. Попробуйте в уме разделить 30 на 1/2 и прибавить 10. Каким будет результат?
[spoiler title=’Ответ:’ collapse_link=’true’]Первое решение, которое обычно приходит на ум, ошибочно:
30/2 + 10 = 25
Если мы делим на дробь, ее нужно переворачивать и производить умножение:
30*2 + 10 = 70
[/spoiler]
Задача:
Сколько целых чисел в диапазоне 1-1000 вмещают в себя цифру 3? При подсчете нельзя пользоваться компьютером.
[spoiler title=’Ответ:’ collapse_link=’true’]Запомните, что нам нужно учесть просто факт содержания в числе тройки. Если, например, это 33 — мы не считаем цифру 2 раза. В числе должна быть по крайней мере одна тройка, чтобы его учесть. Например, числа в диапазоне 300-399 дают нам сразу 100 чисел. Еще 10 мы получаем от 30-39. То же касается 130-139, 230-239, etc. Десяток этих чисел уже был учтен при подсчете 330-339, так что убираем его и получаем:
100 + 90 = 190
А еще есть группа чисел (их 100), которые заканчиваются на тройку: 2-993. Мы исключаем из нее такие 10 чисел, как 303, 313 … 393 (они учтены ранее). Получаем еще +90 чисел. У 1/10 из этих 90 на месте десяток также расположилась тройка: 33, 133 … 933. Убираем еще 9, оставляя 81 число. Дальше простая математика:
100 + 90 + 81 = 271
А вот более изящное решение данной задачи. Сперва мы считаем, сколько чисел не включает в себя тройку (на каждое из 3-х мест ставится 9 цифр, которые не тройки):
9 * 9 * 9 = 729
1000 - 729 = 271
[/spoiler]
Ну что, размялись? Надеемся, вам понравились собранные логические и математические задачи. Если этого мало, можете заглянуть сюда + ниже вы найдете еще больше задач, специально подобранных Библиотекой программиста 🙂
Головоломки с числами | Умные дети
Кому-то может показаться, что возиться с числами — скучно. Для кого-то это, может быть, и так, но не для людей с техническим складом ума, которых — даже среди женщин — не так уже и мало. Тем более, что головоломки из этого раздела нашего сайта — это не (действительно скучные) рутинные задачи на знание таблицы умножения или умение пользоваться калькулятором. В каждой из этих головоломок есть своя изюминка: секрет, подвох, нестандартный подход.
Почти все числовые головоломки из этого раздела можно отнести к одной из следующих категорий:
- Выразить цифрами
- Целый пласт головоломок, объединённых общей идеей: имея на руках заданный набор цифр, выразить с их помощью определённое число. Эти задачи развивают навыки устного счёта и некую «арифметическую интуицию». Для их решения надо чётко понимать арифметические операции, в том числе — в некоторых головоломках — операцию возведения в степень.
- Числовые ребусы
- Очень интересная категория головоломок, каждая из которых представляет собой зашифрованный арифметический пример (то есть пример умножения или деления двух чисел, в котором некоторые цифры заменены буквами или звёздочками). Числовые ребусы хорошо тренируют логическое мышление, поскольку они решаются не интуитивно «на глаз», а путём построения (иногда достаточно сложной и разветвлённой) цепочки рассуждений.
- Расстановки чисел
- Смысл этих головоломок заключается в том, чтобы расставить заданный набор чисел в узлах определённой геометрической фигуры (квадрата, треугольника и т.п.) так, чтобы при этом выполнялись некие регулярные арифметические свойства (скажем, сумма чисел на каждой стороне треугольника была одинакова). Многие из них по праву заслуживают название «головоломка», поскольку решаются они трудно, долго, с перебором большого числа вариантов и хорошим терпением.
Головоломки с числами нужно предлагать ребёнку только после того, как он хорошо освоит арифметические операции. Как обычно, головоломки этого раздела упорядочены по возрастанию сложности. Возможно, самые последние из них окажутся не под силу не только вашему ребёнку, но и вам самим. Не расстраивайтесь — они действительно сложные.
Задачки с числами
Загаданные учителем числа были 2 и 9. Ниже приведена вся логическая цепочка рассуждений. (Примечание: Если приведённое ниже решение кажется Вам не совсем понятным, то чуть ниже Вы найдёте более детальный анализ логоритма решения задачи на примере двух числовых комбинаций.)2 2 – НЕТ – иначе первый студент тоже знал бы их сумму…
2 3 – НЕТ – иначе первый студент тоже знал бы их сумму…
2 4 – НЕТ – иначе первый студент тоже знал бы их сумму…
2 5 – НЕТ – иначе первый студент тоже знал бы их сумму…
2 6
2 7 – НЕТ – иначе первый студент тоже знал бы их сумму…
2 8
2 9
2 10
2 11 – НЕТ – иначе первый студент тоже знал бы их сумму…
3 3 – НЕТ – иначе первый студент тоже знал бы их сумму…
3 5 — – НЕТ – иначе первый студент тоже знал бы их сумму…
3 6
3 7 – НЕТ – иначе первый студент тоже знал бы их сумму…
3 8 – НЕТ – произведение этих чисел не дает таких вариантов, чтобы все другие возможные множетели, дающее то же произведение, в сумме были меньше 14 (например, 2+12).
3 9 – НЕТ – иначе первый студент тоже знал бы их сумму…
3 10 – НЕТ – произведение этих чисел не дает таких вариантов, чтобы все другие возможные множетели, дающее то же произведение, в сумме были меньше 14.
4 4
4 5
4 6 – НЕТ – произведение этих чисел не дает таких вариантов, чтобы все другие возможные множетели, дающее то же произведение, в сумме были меньше 14.
4 8 – НЕТ – произведение этих чисел не дает таких вариантов, чтобы все другие возможные множетели, дающее то же произведение, в сумме были меньше 14.
4 9 – НЕТ – произведение этих чисел не дает таких вариантов, чтобы все другие возможные множетели, дающее то же произведение, в сумме были меньше 14.
5 5 – НЕТ – иначе первый студент тоже знал бы их сумму…
5 6 – НЕТ – произведение этих чисел не дает таких вариантов, чтобы все другие возможные множетели, дающее то же произведение, в сумме были меньше 14.
5 7 – НЕТ – иначе первый студент тоже знал бы их сумму…
5 8 – НЕТ – произведение этих чисел не дает таких вариантов, чтобы все другие возможные множетели, дающее то же произведение, в сумме были меньше 14.
6 6 – НЕТ – произведение этих чисел не дает таких вариантов, чтобы все другие возможные множетели, дающее то же произведение, в сумме были меньше 14.
6 7 – НЕТ – произведение этих чисел не дает таких вариантов, чтобы все другие возможные множетели, дающее то же произведение, в сумме были меньше 14.
Итак, остаются следующие вероятные комбинации, которые рассмотрим более подробно:
2 6 – НЕТ – для суммы этих двух чисел невозможно подобрать другие слагаемые, дающие тот же результат (8), чтобы перемножив эти слагаемые (например, 4х4), Вы получили бы произведение (16), другие возможные множители которого в сумме дают больше 14 (например, 2+8= 10).
2 8
2 9
2 10
3 4 – НЕТ – для суммы этих двух чисел невозможно подобрать другие слагаемые, дающие тот же результат, чтобы перемножив эти слагаемые, Вы получили бы произведение, другие возможные множители которого в сумме дают больше 14.
3 6 – НЕТ – для суммы этих двух чисел невозможно подобрать другие слагаемые, дающие тот же результат, чтобы перемножив эти слагаемые, Вы получили бы произведение, другие возможные множители которого в сумме дают больше 14.
4 4 – НЕТ – для суммы этих двух чисел невозможно подобрать другие слагаемые, дающие тот же результат, чтобы перемножив эти слагаемые, Вы получили бы произведение, другие возможные множители которого в сумме дают больше 14.
4 5 – НЕТ – для суммы этих двух чисел невозможно подобрать другие слагаемые, дающие тот же результат, чтобы перемножив эти слагаемые, Вы получили бы произведение, другие возможные множители которого в сумме дают больше 14.
Второй студент (которому была известна сумма загаданных чисел) знал, что первому студенту (которому было известно произведение загаданных чисел) неизвестна сумма чисел, и думал, что первому студенту неизвестно, что сумма чисел меньше 14.
Остаются только три вероятные комбинации:
2 8 – произведение =16, сумма =10
2 9 – произведение=18, сумма=11
2 10 – произведение=20, сумма=12
Отбросим суммы, которые образуются путем сложения уникальных комбинаций чисел – если известно такое произведение чисел, при котором сумма очевидна (мы могли бы и гораздо раньше оговорить этот момент, но тогда потерялась бы вся прелесть головоломки) – потому что второй студент знал, что известная ему сумма точно не из этой комбинации чисел. Таким образом, сумма не может быть равна 10 (из-за 7 и 3, при которых произведение 21 явно выдаст эти числа). Второй студент знает, что первому студенту сумма неизвестна, но если бы сумма была бы равна 10, то первый студент знал бы сумму, если бы комбинация чисел была 7 и 3. Аналогичным способом отбрасываем сумму 12 (из-за 5 и 7, при умножении выдающие себя в уникальном произведении 35).
И остается только один вариант – числа 2 и 9. Задача решена.
Если приведённое выше решение кажется Вам не совсем понятным, то сейчас мы разберм более детально основной логоритм решения задачи на примере двух числовых комбинаций.
Возьмём числа 6 и 2 и посмотрим, сработает ли такая комбинация.
Первому студент известно произведение, а второму известна сумма этих чисел.
Значит, первому известно произведение 12, а второму – сумма 8.
Первый: «Я не знаю сумму.»
Известное мне произведение равно 12, а получить такое произведение можно так: либо 6х2, либо 3х4. Значит, второму известна сумма, равная либо 8, либо 7.
Второй: «Я знал, что ты не знаешь. Сумма меньше 14.»
Известная мне сумма равна 8, а получить такую сумму можно, сложив 6+2, 5+3 или 4+4. Первый вариант слагаемых даст произведение 12, второй – 15, третий – 16.
Произведение, равное 15 можно сразу вычеркнуть (то есть вариант с числами 5 и 3 отбросить), потому что 15-число уникальное – его можно получить исключительно через натуральные числа 5 и 3, так что будь это именно такая комбинация чисел, студенту были бы известны и произведение, и сумма с самого начала.
Рассмотрим произведение 16. Его можно получить, если множители – либо 4х4, либо 8х2. В этом случае фраза, что сумма этих множителей представляла бы собой число <14, другому студенту никак не поможет (4+4 и 8+2 <14).
Рассмотрим произведение 12. В этом случае студент будет рассчитывать на то, что возможные комбинации чисел – это 4х3 или 6х2. Но и в этом случае фраза, что сумма этих множителей представляла бы собой число <14, другому студенту никак не поможет (4+3 и 6+2 <14).
Следовательно, невозможно подобрать такую комбинацию чисел, составляющих в сумме число 8, где другие слагаемые, дающие ту же сумму, если их перемножить, дадут произведение, другие возможные множители которого в сумме дают больше 14. Например, если это 4 и 4, то нет такой суммы из возможных других множетелей произведения 4х4, которые в сумме дали бы число больше 14 (2+8=10).
Первый: «Теперь я знаю эти числа.»
Я не знал, то ли это 6х2, то ли это 3х4, а второй студент говорит мне, что сумма меньше 14. Но это абсолютно очевидно, что он подумал, что из суммы, равной 8 или 7, можно найти такой вариант слагаемых, произведение которых послужит суммой, которая должна быть больше 14.
Но мне его слова абсолютно не помогли, потому что 6+2 и 3+4 в любом случае меньше 14. Таким образом, комбинация чисел 6 и 2 неверна.
Теперь возьмём числа 9 и 2 и посмотрим, подходит ли такая комбинация.
Первому студент известно произведение, а второму известна сумма этих чисел.
Значит, первому известно произведение 18, а второму – сумма 11.
Первый: «Я не знаю сумму.»
Известное мне произведение равно 18, а получить такое произведение можно так: 9х2 или 6х3. Значит, второму известна сумма, равная либо 11, либо 9.
Второй: «Я знал, что ты не знаешь. Сумма меньше 14.»
Известная мне сумма равна 11, а получить такую сумму можно, сложив 9+2, 8+3, 7+4 или 6+5. Первый вариант слагаемых даст произведение 18, второй – 24, третий – 28, четвёртый – 30.
Если первому студенту известно произведение, равное 18, то он будет рассматривать варианты комбинаций: 9х2 и 6х3, поэтому если я скажу ему, что сумма должна быть меньше 14, это подскажет ему, что у меня есть и другая вероятность, при которой сумма будет больше либо равна 14. Так оно и есть (см три следующих абзаца): 12+2, 14+2 и 15+2.
Если первому студенту известно произведение, равное 24, то он будет рассматривать варианты комбинаций 6х4, 8х3 и 12х2, но 12+2 – это уже 14, так что если произведение, известное первому студенту, было бы 24, то он не мог бы быть абсолютно уверен, что сумма будет меньше 14.
Если первому студенту известно произведение, равное 28, то он будет рассматривать варианты комбинаций 7х4 или 14х2, но 14+2=16, так что если произведение, известное первому студенту, было бы 28, то он не мог бы быть абсолютно уверен, что сумма будет меньше 14.
Если первому студенту известно произведение, равное 30, то он будет рассмтривать варианты комбинаций 5х6, 10х3 и 15х2, но 15+2=17, так что если произведение, известное первому студенту, было бы 30, то он не мог бы быть абсолютно уверен, что сумма будет меньше 14.
Первый: «Теперь я знаю эти числа.»
Я не знал, то ли это 9х2, то ли это 6х3, а второй студент говорит мне, что сумма меньше 14. Должно быть, у него были варианты с суммой ≥14, но это невозможно для суммы 9, полученной с помощью комбинации из 6 и 3. Следовательно, известная ему сумма равна 11, и получена она путем сложения 9 и 2.
интересные математические задачи и задания
Математические задачи по возрасту
Заинтересовать дошкольников 5-7 лет, учащихся начальных классов проще всего. Главное — предложить разнообразные занимательные задания, сделать процесс решения задач увлекательным, с элементами игры, и обеспечить умеренную сложность задач.
Примеры заданий по возрасту
К 3-4 классу мотивация у школьника часто снижается. Родителям важно не упустить этот момент и объяснить ребёнку, зачем вообще заниматься математикой и учиться решать задачи.
Логико-математические и другие развивающие игры по возрасту
Занимательные задачи по типу
В плане регулярных тренировок в любом возрасте должно быть выполнение заданий минимум 5-7 типов. Это поможет комплексному развитию логики у ребенка, познавательных, творческих и математических способностей.
Среди самых интересных и популярных категорий заданий на логику и смекалку:
- Классические логические задачи. Учат детей анализировать текст, выделять главное, рассуждать и делать выводы.
- Арифметические ребусы. Отличная отработка ключевых мыслительных операций: абстрагирование, анализ и синтез, сравнение и другие.
- Задачи на закономерности, последовательности. Помогают развить аналитические способности и творческое мышление.
Примеры заданий по типу
4 детские задачки, которые решат не все взрослые
Ребята, мы вкладываем душу в AdMe.ru. Cпасибо за то,
что открываете эту
красоту. Спасибо за вдохновение и мурашки.
Присоединяйтесь к нам в Facebook и ВКонтакте
Иногда детишкам задают такие задачи, над которыми половина офиса может зависнуть, забыв о работе. А малыши решают их с ходу.
AdMe.ru предлагает 4 совсем детские задачки. Попробуйте решить.
Задача № 1. Парковка
Это простой вопрос из гонконгского теста для зачисления в начальную школу.
Ответ: 87.
Надо просто мысленно повернуть картинку вверх ногами.
Задача № 2. Четырехзначные числа
Дошколята решают эту задачку за 5-10 минут. Программисты — за 1 час.
Ответ: 2581 = 2.
В каждой группе из 4 чисел нужно было всего лишь сосчитать замкнутые кружочки. Например, у цифры 6 один кружочек, у цифры 8 — два. А, значит, у числа 6889 их шесть. И так далее.
Задача № 3. Числовая пирамида
Задачки, как эта, сингапурские третьеклассники щелкают как орешки.
Ответ: D = 1345; E = 2440.
Первым делом складываете два числа в нижнем ряду: 198 + 263 = 461.
Получилась сумма больше того числа, что стоит над ними: 461 > 446.
Вычитаете из большего меньшее: 461 — 446 = 15.
Точно так же считаем остальные пары и видим, что везде получается 15.
Та-дам! Вот и ключ к решению.
Задача № 4. Шоколадная коробка
Задачка из США для детей 12-13 лет: «В коробке 50 шоколадок. Из них 30 с карамелью, 25 — с кокосом, 10 — и с карамелью, и с кокосом, а остальные вообще без начинки.
Вопрос: Какая диаграмма верно отражает содержимое коробки?».
Ответ: диаграмма B.
Простая арифметика:
Сколько шоколадок только с карамелью? 30 — 10 = 20.
Сколько шоколадок только с кокосом? 25 — 10 = 15.
Сколько же остается шоколадок без начинки? 50 — (20 + 15 +10) = 5.
Ребята, мы вкладываем душу в AdMe.ru. Cпасибо за то,
что открываете эту
красоту. Спасибо за вдохновение и мурашки.
Присоединяйтесь к нам в Facebook и ВКонтакте
Задачи с целыми числами
Задачи эти предлагались репетиторам на сертификации по математике портала “Профи.ру”. Задачи не очень сложные, их уровень вполне соответствует 19 задаче ЕГЭ, но интересные.
Задача 1. Чему равно наименьшее восьмизначное число, дающее при делении на 297 остаток 289, при делении на 61 остаток 53, при делении на 21 остаток 13, при делении на 45 остаток 37, при делении на 826 остаток 818?
Решение: обозначим искомое число . Тогда
Глядя на это выражение, становится понятно, что решение затянется… Но можно заметить, что указанное выше выражение можно записать и так:
Тогда становится понятно, что нужно найти наименьшее общее кратное чисел 297, 61, 21, 45 и 826.
61 – простое число. Следовательно,
Ответ: .
Задача 2. Дату 9 октября 1963 года можно записать тремя числами: 9.10.63, которые оказались расположены в порядке неубывания. Во все дни, когда соответствующие три числа располагались в порядке неубывания, на металлообрабатывающем заводе проводились заседания. Чему равно количество дней, которые были посвящены заседаниям, если завод работал с 24 января 1957 года по 6 декабря 2004 года, а даты открытия и закрытия также учитываются?
Начинаем считать. В 57 году было проведено заседаний: 2 в феврале, 3 в марте, 4 в апреле и так далее, 12 в декабре. Итого (сумма прогрессии):
Итак, всего 77 заседаний – так как в январе завод еще не был открыт.
С 58 по 99 год, таким образом, проводилось по 78 заседаний – еще одно в январе.
В 2000 году заседаний не было. В 2001 – только 1, 1 января.
В 2002 – три, одно в январе и 2 в феврале.
В 2003 – 6 (в январе, феврале и марте), в 2004 – 10 (в январе, феврале, марте и апреле).
Осталось сложить:
Ответ: 3373.
Задача 3. Число 1447243 написали 45 раз подряд, при этом получилось 315-значное число. Из этого числа требуется вычеркнуть 3 цифры. Сколькими способами это можно сделать, если полученное 312-значное число должно делиться на 6?
Так как число 6 делится на два и на три, то полученное 312-значное число обязано быть четным. Поэтому последнюю тройку надо вычеркивать. Далее, так как число 1447243 написали 45 раз подряд, то даже без последней тройки оно делится на 3. Поэтому две вычеркнутые нами цифры в сумме обязаны делиться на три. Это 7 и 2 или 2 и 4, или 1 и 2 – никакие две другие в сумме не дадут кратную трем сумму. При этом последнюю в записи 312-значного числа 4 тоже можно вычеркнуть, но нельзя вычеркнуть сразу и 2 и 4, идущие последними. Имеем 135 четверок, 45 семерок, 45 единиц и 45 двоек – двойку вычеркнуть обязательно. Поэтому у нас 45 способов это сделать. После этого у нас 45 способов вычеркнуть 7 – итого 2025 способов. Также 45 способов вычеркнуть 1 – это еще 2025 способов.Если вместе с двойкой вычеркиваем четверку – то у нас 134 способа – последнюю нельзя. Итого 6030 способов. Всего 10080 способов.
Ответ: 10080.
Задача 4. Чему равно наибольшее количество цифр, стертых в 1740-значном числе , если сумма оставшихся цифр равна 1808?
Заметим, что часть 8633 составляет «период» данного числа. Эта часть состоит из 4 цифр, следовательно, в числе она повторяется раз. Сумма цифр этой части равна 20, следовательно, общая сумма всех цифр числа равна . Раз осталась сумма 1808 – следовательно, сумма вычеркнутых равна . Так как требуется вычеркнуть наибольшее количество цифр, то будем вычеркивать сначала все тройки. Сумма всех троек в числе равна . Теперь, если вычеркнуть все шестерки – это дает еще 2610. Остается вычеркнуть еще какое-то количество восьмерок. Определим, сколько:
Итого, мы вычеркнули 870 троек, 435 шестерок и 209 восьмерок – всего 1514 цифр.
Задача 5. Число 5081500199 написали 37 раз подряд, при этом получилось 370-значное число. Из этого 370-значного числа требуется вычеркнуть 5 цифр. Чему равно количество способов, которыми это можно сделать, если полученное после вычеркивания 365-значное число должно делиться на 30?
Так как 30 делится на 5, на 2 и на 3, то придется обязательно вычеркивать три последние цифры – 199. Остается вычеркнуть еще 2. Сумма цифр числа 5081500199 – 38 – не делится на три, число 37 – также. Поэтому надо вычеркивать такие цифры, чтобы добиться делимости на три. После вычеркивания последних трех цифр (199) мы также не добились того, чтобы число делилось на три.
Сумма цифр числа после вычеркивания 199 составляет 1387.
Чтобы добиться делимости на три, нужно вычеркивать либо две пятерки (1377 делится на 3), либо 1 и 0 (1386), либо 8 и 5 (1374) – эти суммы «заберут» лишнюю единицу, и число будет делиться на три. При вычеркивании ноля может быть вычеркнут и последний – это не изменит четности и делимости на 5. Итак, считаем. У нас 74 пятерки, то есть первую можно вычеркнуть 74 способами. Вторую – уже 73. Следовательно, способов вычеркнуть две пятерки – . Вторая пара: единицу можем выбрать 73 способами (одна зачеркнута в самом начале), 0 – 111 способами. Следовательно, вторую пару можно выбрать способами.
Способов выбрать восьмерку – 37, пятерку – 74. Поэтому эта пара даст способов. Итого способа.
Ответ: 16243 способа.
Немного целых чисел: задачи
Предлагаю вашему вниманию несложные задачи на целые числа. Справиться с такими задачами смог бы сообразительный семиклассник, которым я иногда подкидываю “на подумать” подобные задачи. Здесь нужно иметь немного сообразительности, немного знаний из комбинаторики, немного внимательности.
Задача 1. Чему равно количество натуральных делителей числа ?
Заметим, что все числа произведения – простые. То есть у самих чисел, входящих в произведение, нет других делителей, кроме 1 и самого этого числа. Это уменьшает количество возможных вариантов существенно. Возможные делители будут либо числами, входящими в произведение, либо их степенями, либо произведениями комбинаций таких чисел. Составим таблицу вариантов:
Задача 1
Итак, получили 23 возможных делителя. И не забудем про 1!
Ответ: 24.
Задача 2. Чему равно количество натуральных чисел, имеющих сумму цифр 115, а произведение цифр – 6?
Сразу понятно, что нули в состав такого числа войти не могут. Произведение 6 дают либо , либо .
Тогда во втором случае имеем одну 6 и единиц – а всего 110 цифр. Поскольку 6 может занять любое из 110 мест, то получаем 110 вариантов.
Если рассмотреть первый вариант, то в состав числа войдут 3, 2и единиц. Тогда пусть 3 займет любое из 112 мест, и двойке останется 111 вариантов: варианта.
Всего имеем числа, удовлетворяющих условию.
Ответ: 12542.
Задача 3. Чему равно количество таких натуральных чисел , что остаток от деления 355 на равен 12?
Вычтем из 355 и посмотрим, какое же число таки разделилось на :
. Число 343 делится на 7, на 49, на 343 и на 1. Так как остаток всегда меньше делителя, то 1 и 7 отпадают. Ответ: 49 и 343, всего 2 числа.
Ответ: 2.
Задача 4. Вычислите все возможные значения выражения , если величина является решением уравнения ?
Так как , то имеем следующее:
Определить сумму арифметической прогрессии, стоящей в числителе, ничего не стоит:
Подождем перемножать – может быть, впоследствии удастся сократить дробь?
В знаменателе имеем ряд из квадратов натуральных чисел. Сумма такого ряда может быть выведена, если вспомнить, что любой квадрат натурального числа может быть представлен суммой всех нечетных чисел, количество которых равно :
Не вникая в тонкости, приведу готовую формулу такого ряда:
Расчет в нашем случае дает для суммы такого ряда:
Окончательно для искомого числа имеем:
Ответ: .
Задача 5. Чему равны числа, оканчивающиеся цифрами 38, такие, что после вычеркивания этих цифр исходное число уменьшается в целое число раз?
Сразу напрашивается 138 и 238 – при вычеркивании цифр 3 и 8 исходное число уменьшится в 138 и в 119 раз соответственно. Также просится число 3838 – при вычеркивании уменьшится в 101 раз. Также 38 делится на 19 – поэтому попробуем 1938 – это число уменьшится в 102 раза. На этом варианты исчерпаны)).
Ответ: 138, 238, 1938, 3838.
Leave a Reply